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Preface

Since its definition a decade ago, the problem of mining patterns is becoming a very active research 
area, and efficient techniques have been widely applied to problems either in industry, government or 
science. From the initial definition and motivated by real applications, the problem of mining patterns 
not only addresses the finding of itemsets but also more and more complex patterns. For instance, new 
approaches need to be defined for mining graphs or trees in applications dealing with complex data such 
as XML documents, correlated alarms or biological networks. As the number of digital data are always 
growing, the problem of the efficiency of mining such patterns becomes more and more attractive.

One of the first areas dealing with a large collection of digital data is probably text mining. It aims at 
analyzing large collections of unstructured documents with the purpose of extracting interesting, relevant 
and nontrivial knowledge. However, patterns became more and more complex, and led to open problems. 
For instance, in the biological networks context, we have to deal with common patterns of cellular interac-
tions, organization of functional modules, relationships and interaction between sequences, and patterns 
of genes regulation. In the same way, multidimensional pattern mining has also been defined, and a lot 
of open questions remain regarding the size of the search space or to effectiveness consideration. If we 
consider social network in the Internet, we would like to better understand and measure relationships 
and flows between people, groups and organizations. Many real-world applications data are no longer 
appropriately handled by traditional static databases since data arrive sequentially in  rapid, continuous 
streams. Since data-streams are contiguous, high speed and unbounded, it is impossible to mine patterns 
by using traditional algorithms requiring multiple scans and new approaches have to be proposed.

In order to efficiently aid decision making, and for effectiveness consideration, constraints become 
more and more essential in many applications. Indeed, an unconstrained mining can produce such a large 
number of patterns that it may be intractable in some domains. Furthermore, the growing consensus that 
the end user is no more interested by a set patterns verifying selection criteria led to demand for novel 
strategies for extracting useful, even approximate knowledge.

The goal of this book is to provide an overall view of the existing solutions for mining new kinds of 
patterns. It aims at providing theoretical frameworks and presenting challenges and  possible solutions 
concerning pattern extraction with an emphasis on both research techniques and real-world applications. 
It is composed of 11 chapters. 

 Often data mining problems require metric techniques defined on the set of partitions of finite sets 
(e.g., classification, clustering, data preparation). The chapter “Metric Methods in Data Mining” proposed 
by D. A. Simovici addresses this topic. Initially proposed by R. López de Màntaras, these techniques 
formulate a novel splitting criterion that yields better results than the classical entropy gain splitting 
techniques. In this chapter, Simovici investigates a family of metrics on the set of partitions of finite 
sets that is linked to the notion of generalized entropy. The efficiency of this approach is proved through 
experiments conducted for different data mining tasks: classification, clustering, feature extraction and 
discretization. For each approach the most suitable metrics are proposed.
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Mining patterns from a dataset always rely on a crucial point: the interest criterion of the patterns. 
Literature mostly proposes the minimum support as a criterion; however, interestingness may occur in 
constraints applied to the patterns or the strength of the correlation between the items of a pattern, for 
instance. The next two chapters deal with these criteria.

 In “Bidirectional Constraint Pushing in Frequent Pattern Mining” by O.R. Zaïane and M. El-Hajj, 
proposes consideration of the problem of mining constrained patterns. Their challenge is to obtain a 
sheer number of rules, rather than the very large set of rules usually resulting from a mining process. 
First, in a survey of constraints in data mining (which covers both definitions and methods) they show 
how the previous methods can generally be divided into two sets. Methods from the first set consider the 
monotone constraint during the mining, whereas methods from the second one consider the antimonotone 
constraint. The main idea, in this chapter, is to consider both constraints (monotone and antimonotone) 
early in the mining process. The proposed algorithm (BifoldLeap) is based on this principle and allows 
an efficient and effective extraction of constrained patterns.  Finally, parallelization of BifolLeap is also 
proposed in this chapter. The authors thus provide the reader with a very instructive chapter on constraints 
in data mining, from the definitions of the problem to the proposal, implementation and evaluation of 
an efficient solution.

Another criterion for measuring the interestingness of a pattern may be the correlation between the 
items it contains. Highly correlated patterns are named “Hyperclique Patterns” in the chapter of H. Xiong, 
P. N. Tan, V. Kumar and W. Zhou entitled “Mining Hyperclique Patterns: A Summary of Results”.  The 
chapter provides the following observation: when the minimum support in a pattern mining process is 
too low, then the number of extracted itemsets is very high. A thorough analysis of the patterns will often 
show patterns that are poorly correlated (i.e., involving items having very different supports). Those 
patterns may then be considered as spurious patterns. In this chapter, the authors propose the definition 
of hyperclique patterns. Those patterns contain items that have similar threshold. They also give the 
definition of the h-confidence. Then, h-confidence is analyzed for properties that will be interesting in a 
data mining process:  antimonotone, cross-support and a measure of association. All those properties will 
help in defining their algorithm: hyperclique miner. After having evaluated their proposal, the authors 
finally give an application of hyperclique patterns for identifying protein functional modules. 

This book is devoted to provide new and useful material for pattern mining. Both methods afore-
mentioned are presented in the first chapters in which they focus on their efficiency. In that way, this 
book reaches part of the goal. However, we also wanted to show strong links between the methods and 
their applications. Biology is one of the most promising domains. In fact, it has been widely addressed 
by researchers in data mining those past few years and still has many open problems to offer (and to be 
defined). The next two chapters deal with bioinformatics and pattern mining. 

Biological data (and associated data mining methods) are at the core of the chapter entitled “Pattern 
Discovery in Biosequences: From Simple to Complex Patterns” by S. Rombo and L. Palopoli. More 
precisely, the authors focus on biological sequences (e.g., DNA or protein sequences) and pattern ex-
traction from those sequences. They propose a survey on existing techniques for this purpose through 
a synthetic formalization of the problem. This effort will ease reading and understanding the presented 
material. Their chapter first gives an overview on biological datasets involving sequences such as DNA 
or protein sequences. The basic notions on biological data are actually given in the introduction of this 
chapter. Then, an emphasis on the importance of patterns in such data is provided. Most necessary no-
tions for tackling the problem of mining patterns from biological sequential data are given: definitions 
of the problems, existing solutions (based on tries, suffix trees), successful applications as well as future 
trends in that domain.

An interesting usage of patterns relies in their visualization. In this chapter, G. Leban, M. Mramor, 
B. Zupan, J. Demsar and I. Bratko propose to focus on “Finding Patterns in Class-labeled Data Using 
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Data Visualization.” The first contribution of their chapter is to provide a new visualization method for 
extracting knowledge from data. WizRank, the proposed method, can search for interesting multidi-
mensional visualizations of class-labeled data. In this work, the interestingness is based on how well 
instances of different classes are separated. A large part of this chapter will be devoted to experiments 
conducted on gene expression datasets, obtained by the use of DNA microarray technology. Their ex-
periments show simple visualizations that clearly visually differentiate among cancer types for cancer 
gene expression data sets.

Multidimensional databases are data repositories that are becoming more and more im-
portant and strategic in most of the main companies. However, mining these particular data-
bases is a challenging issue that has not yet received relevant answers. This is due to the fact 
that multidimensional databases generally contain huge volumes of data stored according  
to particular structures called star schemas that are not taken into account in most popular 
data mining techniques. Thus, when facing these databases, users are not provided with useful 
tools to help them discovering relevant parts. Consequently, users still have to navigate manu-
ally in the data, that is—using the OLAP operators—users have to write sophisticated queries.  
One important task for discovering relevant parts of a multidimensional database is to identify homo-
geneous parts that can summarize the whole database. In the chapter “Summarizing Data Cubes Using 
Blocks,” Y. W. Choong, A. Laurent and D. Laurent propose original and scalable methods to mine the 
main homogeneous patterns of a multidimensional database. These patterns, called blocks, are defined 
according to the corresponding star schema and thus, provide relevant summaries of a given multidi-
mensional database. Moreover, fuzziness is introduced in order to mine for more accurate knowledge 
that fits users’ expectations.

The first social networking website began in 1995 (i.e., classmates). Due to the development of the 
Internet, the number of social networks grew exponentially. In order to better understand and measuring 
relationships and flows between people, groups and organizations, new data mining techniques, called 
social network mining, appear. Usually social network considers that nodes are the individual actors 
within the networks, and ties are the relationships between the actors. Of course, there can be many kinds 
of ties between the nodes and mining techniques try to extract knowledge from these ties and nodes. In 
the chapter “Social Network Mining from the Web,” Y. Matsuo, J. Mori and M. Ishizuka address this 
problem and show that Web search engine are very useful in order to extract social network. They first 
address basic algorithms initially defined to extract social network. Even if the social network can be 
extracted, one of the challenging problems is how to analyze this network. This presentation illustrates 
that even if the search engine is very helpful, a lot of problems remain, and they also discuss the literature 
advances. They focus on the centrality of each actor of the network and illustrate various applications 
using a social network. 

Text-mining approaches first surfaced in the mid-1980s, but thanks to technological advances it has 
been received a great deal of attention during the past decade. It consists in analyzing large collections 
of unstructured documents for the purpose of extracting interesting, relevant and nontrivial knowledge. 
Typical text mining tasks include text categorization (i.e., in order to classify document collection into 
a given set of classes), text clustering, concept links extraction, document summarization and trends 
detection. 

The following three chapters address the problem of extracting knowledge from large collections of 
documents. In the chapter “Discovering Spatio-Textual Association Rules in Document Images”, M. 
Berardi, M. Ceci and D. Malerba consider that, very often, electronic documents are not always avail-
able and then extraction of useful knowledge should be performed on document images acquired by 
scanning the original paper documents (document image mining). While text mining focuses on patterns 
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involving words, sentences and concepts, the purpose of document image mining is to extract high-level 
spatial objects and relationships. In this chapter they introduce a new approach, called WISDOM++, for 
processing documents and transform documents into XML format. Then they investigate the discovery 
of spatio-textual association rules that takes into account both the layout and the textual dimension on 
XML documents. In order to deal with the inherent spatial nature of the layout structure, they formulate 
the problem as multi-level relational association rule mining and extend a spatial rule miner SPADA 
(spatial pattern discovery algorithm) in order to cope with spatio-textual association rules. They show 
that discovered patterns could also be used both for classification tasks and to support layout correction 
tasks.

L. Candillier, L. Dunoyer, P. Gallinari, M.-C. Rousset, A. Termier and A. M. Vercoustre, in “Mining 
XML Documents,” also consider an XML representation, but they mainly focus on the structure of the 
documents rather than the content. They consider that XML documents are usually modeled as ordered 
trees, which are regarded as complex structures. They address three mining tasks: frequent pattern ex-
traction, classification and clustering. In order to efficiently perform these tasks they propose various 
tree-based representations. Extracting patterns in a large database is very challenging since we have to 
consider the two following problems: a fast execution and we would like to avoid a memory-consum-
ing algorithm. When considering tree patterns the problem is much more challenging due to the size of 
the research space. In this chapter they propose an overview of the best algorithms. Various approaches 
to XML document classification and clustering are also proposed. As the efficiency of the algorithms 
depends on the representation, they propose different XML representations based on structure, or both 
structure and content. They show how decision-trees, probabilistic models, k-means and Bayesian net-
works can be used to extract knowledge from XML documents. 

In the chapter “Topic and Cluster Evolution Over Noisy Document Streams,” S. Schulz, M. Spiliopoulou 
and R. Schult also consider text mining but in a different context: a stream of documents. They mainly 
focus on the evolution of different topics when documents are available over streams. As previously stated, 
one of the important purpose in text mining is the identification of trends in texts. Discover emerging 
topics is one of the problems of trend detection. In this chapter, they discuss the literature advances on 
evolving topics and on evolving clusters and propose a generic framework for cluster change evolu-
tion. However discussed approaches do not consider non-noisy documents. The authors propose a new 
approach that puts emphasis on small and noisy documents and extend their generic framework. While 
cluster evolutions assume a static trajectory, they use a set-theoretic notion of overlap between old and 
new clusters. Furthermore the framework extension consider both a document model describing a text 
with a vector of words and a vector of n-gram, and a visualization tool used to show emerging topics. 

In a certain way, C. J. Joutard, E. M. Airoldi, S. E. Fienberg and T. M. Love also address the analysis 
of documents in the chapter “Discovery of Latent Patterns with Hierarchical Bayesian Mixed-Member-
ship Models and the Issue of Model Choice.” But in this chapter, the collection of papers published in 
the Proceedings of the National Academy of Sciences is used in order to illustrate the issue of model 
choice (e.g., the choice of the number of groups or clusters). They show that even if statistical models 
involving a latent structure support data mining tasks, alternative models may lead to contrasting conclu-
sions. In this chapter they deal with hierarchical Bayesian mixed-membership models (HBMMM), that 
is, a general formulation of mixed-membership models, which are a class of models very well adapted 
for unsupervised data mining methods and investigate the issue of model choice in that context.   They 
discuss various existing strategies and propose new model specifications as well as different strategies 
of model choice in order to extract good models. In order to illustrate, they consider both analysis of 
documents and disability survey data.
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AbstrAct

This chapter presents data mining techniques that make use of metrics defined on the set of partitions 
of finite sets. Partitions are naturally associated with object attributes and major data mining problem 
such as classification, clustering and data preparation which benefit from an algebraic and geometric 
study of the metric space of partitions. The metrics we find most useful are derived from a generaliza-
tion of the entropic metric. We discuss techniques that produce smaller classifiers, allow incremental 
clustering of categorical data and help users to better prepare training data for constructing classifiers. 
Finally, we discuss open problems and future research directions.

IntroductIon 

This chapter is dedicated to metric techniques 
applied to several major data mining problems: 
classification, feature selection, incremental 
clustering of categorical data and to other data 
mining tasks.

These techniques were introduced by R. López 
de Màntaras (1991) who used a metric between 
partitions of finite sets to formulate a novel split-
ting criterion for decision trees that, in many cases, 
yields better results than the classical entropy gain 
(or entropy gain ratio) splitting techniques.

Applications of metric methods are based on 
a simple idea: each attribute of a set of objects 
induces a partition of this set, where two objects 
belong to the same class of the partition if they 
have identical values for that attribute. Thus, any 
metric defined on the set of partitions of a finite 
set generates a metric on the set of attributes. 
Once a metric is defined, we can evaluate how 
far these attributes are, cluster the attributes, find 
centrally located attributes and so on. All these 
possibilities can be exploited for improving exist-
ing data mining algorithms and for formulating 
new ones.
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Important contributions in this domain have 
been made by J. P. Barthélemy (1978), Barthélemy 
and Leclerc (1995) and B. Monjardet (1981) where 
a metric on the set of partitions of a finite set is 
introduced starting from the equivalences defined 
by partitions.

Our starting point is a generalization of Shan-
non’s entropy that was introduced by Z. Daróczy 
(1970) and by J. H. Havrda and F. Charvat (1967). 
We developed a new system of axioms for this type 
of entropies in Simovici and Jaroszewicz (2002) 
that has an algebraic character (being formulated 
for partitions rather than for random distributions). 
Starting with a notion of generalized conditional 
entropy we introduced a family of metrics that 
depends on a single parameter. Depending on the 
specific data set that is analyzed some of these 
metrics can be used for identifying the “best” 
splitting attribute in the process of constructing 
decision trees (see Simovici & Jaroszewicz, 2003, 
in press). The general idea is to use as splitting 
attribute the attribute that best approximates the 
class attribute on the set of objects to be split. 
This is made possible by the metric defined on 
partitions.

The performance, robustness and useful-
ness of classification algorithms are improved 
when relatively few features are involved in the 
classification. Thus, selecting relevant features 
for the construction of classifiers has received 
a great deal of attention. A lucid taxonomy of 
algorithms for feature selection was discussed in 
Zongker and Jain (1996); a more recent reference 
is Guyon and Elisseeff (2003). Several approaches 
to feature selection have been explored, including 
wrapper techniques in Kohavi and John, (1997) 
support vector machines in Brown, Grundy, 
Lin, Cristiani, Sugnet, and Furey (2000), neural 
networks in Khan, Wei, Ringner, Saal, Ladanyi, 
and Westerman (2001), and prototype-based 
feature selection (see Hanczar, Courtine, Benis, 
Hannegar, Clement, & Zucker, 2003) that is close 
to our own approach. Following Butterworth, 
Piatetsky-Shapiro, and Simovici (2005), we shall 

introduce an algorithm for feature selection that 
clusters attributes using a special metric and, 
then uses a hierarchical clustering for feature 
selection.

Clustering is an unsupervised learning pro-
cess that partitions data such that similar data 
items are grouped together in sets referred to as 
clusters. This activity is important for condens-
ing and identifying patterns in data. Despite the 
substantial effort invested in researching cluster-
ing algorithms by the data mining community, 
there are still many difficulties to overcome in 
building clustering algorithms. Indeed, as pointed 
in Jain, Murthy and Flynn (1999) “there is no 
clustering technique that is universally applicable 
in uncovering the variety of structures present 
in multidimensional data sets.” This situation 
has generated a variety of clustering techniques 
broadly divided into hierarchical and partitional; 
also, special clustering algorithms based on a va-
riety of principles, ranging from neural networks 
and genetic algorithms, to tabu searches.

We present an incremental clustering algo-
rithm that can be applied to nominal data, that 
is, to data whose attributes have no particular 
natural ordering. In general, objects processed 
by clustering algorithms are represented as points 
in an n-dimensional space Rn and standard dis-
tances, such as the Euclidean distance, are used 
to evaluate similarity between objects. For objects 
whose attributes are nominal (e.g., color, shape, 
diagnostic, etc.), no such natural representation of 
objects as possible, which leaves only the Ham-
ming distance as a dissimilarity measure; a poor 
choice for discriminating among multivalued 
attributes of objects. Our approach is to view 
clustering as a partition of the set of objects and 
we focus our attention on incremental clustering, 
that is, on clusterings that build as new objects 
are added to the data set (see Simovici, Singla, 
& Kuperberg, 2004; Simovici & Singla, 2005). 
Incremental clustering has attracted a substantial 
amount of attention starting with algorithm of 
Hartigan (1975) implemented in Carpenter and 
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Grossberg (1990). A seminal paper (Fisher, 1987) 
contains an incremental clustering algorithm that 
involved restructurings of the clusters in addition 
to the incremental additions of objects. Incre-
mental clustering related to dynamic aspects of 
databases were discussed in Can (1993) and Can, 
Fox, Snavely, and France (1995). It is also notable 
that incremental clustering has been used in a 
variety of areas (see Charikar, Chekuri, Feder, & 
Motwani, 1997; Ester, Kriegel, Sander, Wimmer, 
& Xu, 1998; Langford, Giraud-Carrier, & Magee, 
2001; Lin, Vlachos, Keogh, & Gunopoulos, 2004). 
Successive clusterings are constructed when 
adding objects to the data set in such a manner 
that the clusterings remain equidistant from the 
partitions generated by the attributes.

Finally, we discuss an application to metric 
methods to one of the most important pre-pro-
cessing tasks in data mining, namely data dis-
cretization (see Simovici & Butterworth, 2004; 
Butterworth, Simovici, Santos, & Ohno-Machado, 
2004).

PArtItIons, MetrIcs, entroPIes

Partitions play an important role in data min-
ing. Given a nonempty set S, a partition of S is 
a nonempty collection π = {B1, ..., Bn} such that 
i≠j implies Bi ∩ Bj = ∅, and:

 
1

.
n

ii
B S

=
=



 

We refer to the sets B1, ..., Bn as the blocks of π. The 
set of partitions of S is denoted by PARTS(S).

The set of partitions of S is equipped with a 
partial order by defining π ≤ σ if every block B 
of π is included in a block C of σ. Equivalently, 
we have π ≤ σ if every block C of σ is a union 
of a collection of blocks of π. The smallest ele-
ment of the partially ordered set (PART(S) ≤) is 
the partition aS whose blocks are the singletons 
{x} for x ∈ S; the largest element is the one-block 
partition wS whose unique block is S.

Example 1
Let S = {a, b, c, d} be a four-element set. The 
set PARTS(S) consists of the 15 partitions shown 
in Box 1.

{ } { } { } { }{ } { } { } { }{ } { } { } { }{ } { } { } { }{ }
{ } { } { }{ } { } { } { }{ } { } { } { }{ } { } { }{ }
{ } { }{ } { } { }{ } { } { }{ } { } { }{ }
{ } { }{ } { } { }{ } { }{ }

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , ,

a b c d a b c d a c b d a d b c

a b c d a b d c a b c d a b c d

a b c d a b d c a c b d a c d b

a d b c a b c d a b c d

Box 1.

Box 2.

{ } { } { } { }{ } { } { } { }{ } { } { }{ } { }{ }, , , , , , , , , , , ,a b c d a b c d a b c d a b c d≤ ≤ ≤
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Among many chains of partitions we mention 
that as shown in Box 2.

A partition σ covers another partition π (de-
noted by π σ) if π ≤ σ and there is no partition 
t such that π ≤ t ≤ σ. The partially ordered set 
PARTS(S) is actually a lattice. In other words, 
for every two partitions π, σ ∈ PARTS(S) both 
inf{π, σ} and sup{π, σ} exist. Specifically, inf{π, 
σ} is easy to describe. It consists of all nonempty 
intersections of blocks of π and σ:

{ } { }inf , , ,B C B C B C= ∩ ∈ ∈ ∩ ≠ ∅ .

We will denote this partition by π∩σ. The su-
premum of two partitions sup{π,σ} is a bit more 
complicated. It requires that we introduce the 
graph of the pair π,σ as the bipartite graph G(π,σ) 
having the blocks of π and σ as its vertices. An 
edge (B,C) exists if B∩C≠∅. The blocks of the 
partition sup{π,σ} consist of the union of the blocks 
that belong to a connected component of the graph 
G{π,σ}. We will denote sup{π,σ} by π∪σ.

Example 2

The graph of the partitions π = {{a,b}, {c}, {d}} 
and σ = {{a}, {b,d}, {c}} of the set S = {a, b, c, 
d} is shown in Figure 1. The union of the two 

connected components of this graph are {a,b,d} 
and {c}, respectively, which means that π∪σ = 
{{a,b,d}, {c}}. 

We introduce two new operations on partitions. 
If S,T are two disjoint sets and π ∈ PARTS(S),        
σ ∈  PARTS(T), the sum of π and σ  is the parti-
tion: π + σ = {B1,...,Bn, C1,...,Cp} of S∪T, where  
π = {B1,...,Bn} and σ = {C1,...,Cp}.

Whenever the “+” operation is defined, then it 
is easily seen to be associative. In other words, if 
S,U,V are pairwise disjoint and nonempty sets, and  
π ∈ PARTS(S), σ ∈  PARTS(U), and t ∈ PARTS(V), 
then (π+σ)+t = π+(σ+t). Observe that if S,U are 
disjoint, then aS + aU= aS∪U. Also, wS + wU is the 
partition {S,U} of the set S ∪ U.

For any two nonempty sets S, T and π ∈ 
PARTS(S), σ ∈ PARTS(T) we define the product 
of π and σ, as the partition π × σ {B × C | B ∈ π, 
C ∈ σ} of the set product B × C .

Example 3

Consider the set S = {a1,a2,a3}, T = {a4,a5,a6,a7} 
and the partitions p = {{a1,a2},{a3}}, s = 
{{a4}{a5,a6}{a7}} of S and T, respectively. The 
sum of these partitions is: π + σ = {{a1,a2},{a3}, 
{a4}, {a5,a6}, {a7}} , while their product is:

Figure 1. Graph of two partitions
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π × s = {{a1,a2} × {a4}, {a1,a2} × {a5,a6}, {a1,a2} × 
{a7}, {a3} × {a4}, {a3} × {a5, a6}, {a3} × {a7}}.

A metric on a set S is a mapping d: S × S → R≥0 
that satisfies the following conditions:

(M1) d(x, y) = 0 if and only if x = y
(M2) d(x,y) = d(y,x)
(M3) d(x,y) + d(y,z) ≥ d(x,z)

for every x,y,z ∈ S. In equality (M3) is known as 
the triangular axiom of metrics. The pair (S,d) 
is referred to as a metric space.

The betweeness relation of the metric space 
(S,d) is a ternary relation on S defined by [x,y,z]  
if d(x,y) + d(y,z) = d(x,z). If [x, y, z] we say that y 
is between x and z.

The Shannon entropy of a random variable X 
having the probability distribution p = (p1,...,pn) 
is given by:

1 2
1

( ,..., ) log .
n

n i i
i

H p p p p
=

= -∑

For a partition π ∈ PARTS(S) one can define a 
random variable Xπ that takes the value i whenever 
a randomly chosen element of the set S belongs 
to the block Bi of π. Clearly, the distribution of Xπ 

is (p1,...,pn), where: 

| |
| |

i
i

Bp
S

=  .

Thus, the entropy H(π) of π can be naturally de-
fined as the entropy of the probability distribution 
of X and we have:

( ) 2
1

| | | |log .
| | | |

n
i i

i

B BH
S S=

= -∑

By the well-known properties of Shannon entropy 
the largest value of H(π), log2 S , is obtained for 
π = aS, while the smallest, 0, is obtained for π 
= wS.

It is possible to approach the entropy of 
partitions from a purely algebraic point of view 
that takes into account the lattice structure of  
(PARTS(S)≤) and the operations on partitions that 
we introduced earlier. To this end, we define the 
β-entropy, where β>0, as a function defined on 
the class of partitions of finite sets that satisfies 
the following conditions:

(P1) If π1,π2 ∈ PARTS(S) are such that π1 ≤ π2, 
then Hβ(π2) ≤ Hβ(π1).

(P2) If S,T are two finite sets such that | S | ≤ | T|, 
then Hβ(aT) ≤ Hβ(aS).

(P3) For every disjoint sets S,T and partitions p ∈ 
PARTS(S) and σ ∈ PARTS(T) see Box 3.

(P4) If π ∈ PARTS(S) and σ ∈ PARTS(T), then 
Hβ(π×σ) = j (Hβ(π), Hβ(σ)), where j : R≥0 → 
R≥0 is a continuous function such that j (x,y) 
= j (y,x), and j (x,0) = x for x,y ∈ R≥0.

In Simovici and Jaroszewicz (2002) we have shown 
that if π = {B1,...,Bn} is a partition of S, then:

1
1

| |1( ) 1
| |2 1

n
i

i

BH
S-

=

   = -  -   
∑      

In the special case, when b → 1 we have:

{ }( )| | | |( ) ( ) ( ) ,
| | | | | | | |

S TH H H H S T
S T S T

   
+ = + +   + +   

Box 3.
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1 2
1

| | | |lim ( ) log
| | | |

n
i i

i

B BH
S S→

=

= -∑

This axiomatization also implies a specific form 
of the function j. Namely, if β ≠ 1 it follows that 
j (x,y) = x+y+(21-β –1)xy. In the case of Shannon 
entropy, obtained using β = 1 we have j (x,y) = 
x+y for x,y ∈ R≥0.

Note that if | S | = 1, then PARTS(S) consists of 
a unique partition aS = wS and Hβ (wS) = 0.  More-
over, for an arbitrary finite set S we have Hβ(π) 
= 0 if and only if π = wS. Indeed, let U,V be two 
finite disjoint sets that have the same cardinality. 
Axiom (P3) implies Box 4.

Since wU + wV = {U,V} it follows that Hβ (wU) 
= Hβ (wV) =0.

Conversely, suppose that Hβ (π) = 0. If π ≤ 
wS  there exists a block B of π such that ∅ ⊂ B ⊂ 
S. Let q be the partition q = {B,S –B}. It is clear 
that π ≤ q, so we have 0 ≤ Hβ (q) ≤ Hβ(π) which 
implies Hβ (q) = 0. This in turn yields:

| | | | 1 0
| | | |
B S B
S S

   -
+ - =   

   

Since the function f(x) = xβ + (1–x)β – 1 is concave 
for b > 1 and convex for b < 1 on the interval [0,1], 
the above equality is possible only if B = S or if  
B = ∅, which is a contradiction. Thus, π = wS.

These facts suggest that for a subset T of S the 
number Hβ (πT) can be used as a measure of the 
purity of the set T with respect to the partition 
π. If T is π-pure, then πT = wT and, therefore, Hβ 
(πT) = 0. Thus, the smaller Hβ (πT), the more pure 
the set T is.

The largest value of Hβ (π)  when p ∈ PARTS(S) 
is achieved when π = aS; in this case we have:

{ }( )1( ) ( ( ) ( )) ,
2U V U VH H H H U V + = + + 

 

Box 4.

1 1
1 1( ) 1

2 1 | |SH
S- -

 
= - -  

        
GeoMetry of the MetrIc 
sPAce of PArtItIons of fInIte 
sets

Axiom (P3) can be extended as follows:

Theorem 1: Let S1,...,Sn be n pairwise disjoint 
finite sets,S =∏ Si  and let p1,...,pn be partitions 
of S1,...,Sn, respectively. We have:

1
1

| |( ... ) ( ) ( ),
| |

n
i

n i
i

SH H H
S=

 
+ + = + 

 
∑

where q is the partition {S1,...,Sn}of S.

The β-entropy defines a naturally conditional 
entropy of partitions. We note that the definition 
introduced here is an improvement over our previ-
ous definition given in Simovici and Jaroszewicz 
(2002). Starting from conditional entropies we will 
be able to define a family of metrics on the set of 
partitions of a finite set and study the geometry 
of these finite metric spaces.

Let π,σ ∈ PARTS(S), where σ = {C1,...,Cn}. 
The β-conditional entropy of the partitions  π,σ 
∈ PARTS(S) is the function defined by:

1

| |
( | ) ( ).

| | j

n
j

C
j

C
H H

S=

 
=  

 
∑

Observe that Hβ (π|wS) = Hβ (π) and that Hβ (wS π) 
= Hβ (π |aS) = 0  for every partition. π ∈ PARTS(S) 
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Also, we can write that which is seen in Box 5.  
In general, the conditional entropy can be written 
explicitly as seen in Box 6.

Theorem 2: Let π,σ  be two partitions of a finite set 
S. We have Hβ (p | s) = 0 if and only if σ ≤ π. 

The next statement is a generalization of a 
well-known property of Shannon’s entropy.

Theorem 3: Let π, σ be two partitions of a finite 
set S. We have:

( ) ( | ) ( ) ( | ) ( ).H H H H H∧ = + = +

The β -conditional entropy is dually monotonic 
with respect to its first argument and is monotonic 
with respect to its second argument, as we show 
in the following statement:

Theorem 4: Let π, σ, σ ′ be two partitions of a 
finite set  S. If σ ≤ σ ′, then Hβ (σ | π) ≥ Hβ(σ ′| π)  
and Hβ (π | σ) ≤ Hβ(β | σ ′). 

The last statement implies immediately that 
Hβ (π) ≥ Hβ (π | σ ) for every π,σ PARTS(S) 

The behavior of β -conditional entropies with 
respect to the sum of partitions is discussed in 
the next statement.

Theorem 5: Let S be a finite set, and let π, q ∈ 
PARTS(S) where q = {D1,...,Dh}. If σi ∈ PARTS(D) 
for 1 ≤ i ≤ h, then: 

1
1

| |( | ... ) ( | ).
| | i

h
i

h D i
i

DH H
S=

 
+ + =  

 
∑

If  t = {F1,...,Fk}, σ = {C1,...,Cn} are two partitions 
of S and πi ∈ PARTS(Fi) for 1 ≤  i ≤  k then:

 
1

1

| |( ... | ) ( | ) ( | ).
| | i

k
i

k i F
i

FH H H
S=

 
+ + = + 

 
∑

López de Màntaras, R. (1991) proved that Shan-
non’s entropy generates a metric d: S × S → R≥0 
given by d(π,σ) = H(π | σ) + H(σ | π), for π,σ ∈ 
PARTS(S). We extended his result to a class of 

where π = {B1,...,Bm}.

1 1
1 1

| | | |1 1( | ) ( )
| | | |2 1 | |j

n n
j j

S C
j j

C C
H H

S SS- -
= =

     = = -    -    
∑ ∑

Box 5.

where s = {C1,...,Cn}

1
1 1

| | | |1( | ) ,
| | | |2 1

m n
i j j

i j

B C C
H

S S-
= =

 ∩    = -    -     
∑∑

Box 6. 
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metrics {dβ | β ∈ R≥0} that can be defined by β-
entropies, thereby improving our earlier results. 

The next statement plays a technical role in the 
proof of the triangular inequality for dβ.

Theorem 6: Let π, σ, t be three partitions of the 
finite set S. We have:

( | ) ( | ) ( | ).H H H∧ + = ∧

Corollary 1: Let π, σ, t be three partitions of the 
finite set S. Then, we have:

( | ) ( | ) ( | ).H H H+ ≥

 Proof: By theorem 6, the monotonicity of 
β-conditional entropy in its second argument 
and the dual monotonicity of the same in its 
first argument we can write that which is 
seen in Box 7, which is the desired inequal-
ity. QED.

We can show now a central result:

Theorem 7: The mapping dβ: S × S → R≥0 defined 
by dβ (π,σ) = Hβ (π  | σ) + Hβ(σ | π)  for π, σ ∈ 
PARTS(S)  is a metric on PARTS(S).

 Proof: A double application of Corollary 1 
yields Hβ(π | σ) + Hβ (σ t) ≥ Hβ (π | t) and 
Hβ(σ | π) + Hβ (t | σ) ≥ Hβ (t | π). Adding 
these inequality gives: dβ(π, σ) + dβ (σ, t) ≥ 

dβ (π, t), which is the triangular inequality 
for dβ.

 
The symmetry of dβ is obvious and it is clear 

that dβ (π, π) = 0 for every β ∈ PARTS(S).
Suppose now that dβ (π, σ) = 0. Since the values 

of β-conditional entropies are non-negative this 
implies Hβ (π | σ) = Hβ (σ | π)= 0. By theorem 2, 
we have both σ ≤ π and π ≤ σ, respectively, so 
π=σ. Thus, dβ is a metric on PARTS(S). QED.

Note that dβ (π, wS) = Hβ(π) and  dβ (π, aS) = 
Hβ(aS | π).

The behavior of the distance dβ with respect 
to partition sum is discussed in the next state-
ment.

Theorem 8: Let S be a finite set, π, q ∈ PARTS(S), 
where q  = {D1,...,Dh}.  If σi ∈ PARTS(Di) for 1 
≤ i ≤ h then:

 
1

1

| |
( , ... ) ( , ) ( | ).

| | i

h
i

h D i
i

D
d d H

S=

 
+ + = + 

 
∑

The distance between two partitions can be 
expressed using distances relative to the total 
partition or to the identity partition. Indeed, note 
that for π, σ ∈ PARTS(S) where π = {B1,...,Bm} 
and  σ = {C1,...,Cn} we have:

1
1( , )

(2 1) | |
d

S-=
-

1 1 1 1

2 | | | | | |
m n m n

i j i j
i j i j

B C B C
= = = =

 
∩ - -  
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Box 7. 

( | ) ( | ) ( | ) ( | ) ( | ) ( | ),H H H H H H+ ≥ ∧ + = ∧ ≥
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In the special case, when σ = wS we have:

1
1

1( , ) | | | | .
(2 1) | |

m

S i
i

d B S
S-

=

 
= - 

-  
∑

Similarly, we can write:

1
1

1( , ) | | | | .
(2 1) | |

n

S j
j

d S C
S-

=

 
= -  -  

∑

These observations yield two metric equalities:

Theorem 9: Let π, σ ∈ PARTS(S)  be two parti-
tions. We have:

( , ) 2 ( , ) ( , ) ( , )

( , ) ( , ) 2 ( , ).
S S S

S S S

d d d d

d d d

= ∧ - -

= + - ∧

It follows that for q, t ∈ PARTS(S), if q ≤ t  and we 
have either dβ (q, wS) = dβ (t, wS)  or dβ (q,aS) = dβ 

(t, aS) , then q = t. This allows us to formulate:

Theorem 10: Let π, σ ∈ PARTS(S). The following 
statements are equivalent:

1. σ ≤ π
2. We have [σ, π, wS] in the metric space 

(PARTS(S), dβ)
3. We have [aS, σ, π] in the metric space 

(PARTS(S), dβ)

Metrics generated by β -conditional entropies 
are closely related to lower valuations of the upper 
semimodular lattices of partitions of finite sets. 
This connection was established Birkhoff (1973) 
and studied by Barthèlemy (1978), Barthèlemy 
and Leclerc (1995) and Monjardet (1981).

A lower valuation on a lattice (L, ∧, ∨) is a 
mapping v: L → R such that:

( ) ( ) ( ) ( )v v v v∧ + ∨ ≥ +

for every π, σ ∈ L. If the reverse inequality is 
satisfied, that is, if: 

( ) ( ) ( ) ( )v v v v∧ + ∨ ≤ +

for every π, σ ∈ L then v  is referred to as an 
upper valuation.

If v is both a lower and upper valuation, that 
is, if: 

( ) ( ) ( ) ( )v v v v∧ + ∨ = +

for every π, σ ∈ L then v is a valuation on L. It 
is known (see Birkhoff (1973) that if there ex-
ists a positive valuation v on L, then L must be a 
modular lattice. Since the lattice of partitions of 
a set is an upper-semimodular lattice that is not 
modular it is clear that positive valuations do not 
exist on partition lattices. However, lower and 
upper valuations do exist, as shown next.

Theorem 11: Let S be a finite set. Define the 
mappings vβ:PARTS(S) → R and wβ:PARTS(S) 
→ R by vβ(π) = dβ(aS, π) and wβ(π) = dβ(π, wS), 
respectively, for σ ∈ PARTS(S). Then, vβ is a 
lower valuation and wβ is an upper valuation on 
the lattice (PARTS(S), ∧, ∨). 

MetrIc sPlIttInG crIterIA for 
decIsIon trees

The usefulness of studying the metric space of 
partitions of finite sets stems from the associa-
tion between partitions defined on a collection of 
objects and sets of features of these objects. To 
formalize this idea, define an object system as a 
pair T = (T, H), where T is a sequence of objects 
and H is a finite set of functions, H = {A1,...,An},  
where Ai: T → Di for 1 ≤ i ≤ n.  The functions 
Ai are referred to as features or attributes of the 
system. The set  Di is the domain of the attribute 
Ai; we assume that each set Ai contains at least to 
elements. The cardinality of the domain of attri-
bute A will be denoted by mA. If X = (Ai1

,...,Ain
) is 

a sequence of attributes and t ∈ T the projection 
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of t on is the sequence t[X] = (Ai1
(t),...,Ain

(t)). The 
partition πX defined by the sequence of attributes 
is obtained by grouping together in the same 
block all objects having the same projection on 
X. Observe that if X, Y are two sequences of at-
tributes, then πXY = πX ∧ πY.

 Thus, if U is a subsequence of V (denoted by 
U ⊆ V) we have πV ≤ πU. 

For example, if X is a set of attributes of a table 
T, any SQL phrase such as:

select count(*) from T group by X

computes the number of elements of each of the 
blocks of the partition πX of the set of tuples of 
the table T. 

To introduce formally the notion of decision 
tree we start from the notion of tree domain. A 
tree domain is a nonempty set of sequences D 
over the set of natural numbers N that satisfies 
the following conditions:

1. Every prefix of a sequence σ ∈ D also be-
longs to D.

2. For every m ≥ 1, if (p1,...,pm-1, pm) ∈ D, then 
(p1,...,pm-1, q) ∈ D for every q ≤ pm. 

The elements of D are called the vertices of D. 
If u,v are vertices of D and u is a prefix of v, then 
we refer to v as a descendant of u and to u as an 
ancestor of v. If v = ui for some i ∈ N, then we 
call v an immediate descendant of u and u an 
immediate ancestor of v. The root of every tree 
domain is the null sequence λ. A leaf of D is a 
vertex of D with no immediate descendants.

Let S be a finite set and let D be a tree domain. 
Denote by Ρ (S) the set of subsets of S. An S-tree 
is a function T: D → P(S)  such that T(I) = S, and 
if u1,...,um are the immediate descendants of a 
vertex u, then the sets T (u1),...,T (um) form a 
partition of the set T(u). 

A decision tree for an object system T = (T,H) 
is an S-tree T, such that if the vertex v has the de-
scendants v1, …, vm, then there exists an attribute 

A in H (called the splitting attribute in v) such that 
{T (vi) | 1 ≤ i ≤ m} is the partition ( )v

A
T .

Thus, each descendant vi of a vertex v cor-
responds to a value a of the attribute A that was 
used as a splitting attribute in v. If I =v1,...,vk=u  is 
the path in T that was used to reach the vertex u, 
Ai,...,Ak-1 are the splitting attributes in v1,...,vk-1 and 
a1,...,ak-1 are the values that correspond to v2,...,vk, 
respectively, then we say that u is reached by the 
selection Ai1

 = a1 ∧...∧ Aik-1
= ak-1. 

It is desirable that the leaves of a decision tree 
contain C-pure or almost C-pure sets of objects. In 
other words, the objects assigned to a leaf of the tree 
should, with few exceptions, have the same value 
for the class attribute C. This amounts to asking 
that for each leaf w of T we must have ( )

w

C
SH  

as close to 0 as possible. To take into account the 
size of the leaves note that the collection of sets 
of objects assigned to the leafs is a partition k of 
S and that we need to minimize:

| | ( ),
| | w

Cw
S

w

S H
S

 
 
 

∑

which is the conditional entropy Hβ(π
C | k).  By 

theorem 2 we have Hβ(π
C | k) = 0 if and only if 

k ≤ πC, which happens when the sets of objects 
assigned to the leafs are C-pure.

The construction of a decision tree Tβ(T) for 
an object system T = (T,H) evolves in a top-down 
manner according to the following high-level de-
scription of a general algorithm (see Tan, 2005). 
The algorithm starts with an object system T = 
(T,H), a value of β and with an impurity threshold 
e and it consists of the following steps:

1. If  ( )C
SH ≤ , then return T as a one-vertex 

tree; otherwise go to 2.
2. Assign the set S to a vertex v, choose an at-

tribute A as a splitting attribute of S (using 
a splitting attribute criterion to be discussed 
in the sequel) and apply the algorithm to the 
object systems T1 = (T1, H1),...,Tp = (Tp,Hp), 
where for 1 ≤ i ≤ p. Let T1,...,Tp the decision 
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trees returned for the systems T1,...,Tp, re-
spectively. Connect the roots of these trees 
to v.

Note that if e is sufficiently small and if  
( ) ,C

SH ≤  where S = T (u) is the set of objects 
at a node u, then there is a block Qk of the parti-
tion C

S  that is dominant in the set S. We refer to 
Qk as the dominant class of u.

Once a decision tree T is built it can be used 
to determine the class of a new object t ∉ S such 
that the attributes of the set H are applicable. If 
Ai1

(t) = a1,...,Aik-1
 (t) = ak-1, a leaf u was reached 

through the path I = v1,...,vk= u, and a1a2,...,ak-1 are 
the values that correspond to v2,...,vk, respectively, 
then t is classified in the class Qk, where Qk is the 
dominant class at leaf u.

The description of the algorithm shows that the 
construction of a decision tree depends essentially 
on the method for choosing the splitting attribute. 
We focus next on this issue.

Classical decision tree algorithms make use 
of the information gain criterion or the gain ratio 
to choose splitting attribute. These criteria are 
formulated using Shannon’s entropy, as their 
designations indicate.

In our terms, the analogue of the informa-
tion gain for a vertex w and an attribute A is: 

( ) ( | ).
w w w

C C A
S S SH H-  The selected attribute 

is the one that realizes the highest value of this 
quantity. When β → 1 we obtain the information 
gain linked to Shannon entropy. When β = 2 one 
obtains the selection criteria for the Gini index 
using the CART algorithm described in Breiman, 
Friedman, Olshen and Stone (1998).

The monotonicity property of conditional 
entropy shows that if A,B are two attributes 
such that πA ≤ πB (which indicates that the do-
main of A has more values than the domain of 
B), then ( | ) ( | ),

w w w w

C A C B
S S S SH H≤  so the 

gain for A is larger than the gain for B. This 
highlights a well-known problem of choosing 
attributes based on information gain and related 
criteria: these criteria favor attributes with large 

domains, which in turn, generate bushy trees. 
To alleviate this problem information gain was 
replaced with the information gain ratio defined 
as ( ( ) ( | )) / ( ),

w w w w

C C A A
S S S SH H H-

 which 
introduces the compensating divisor ( ).

w

A
SH

We propose replacing the information 
gain and the gain ratio criteria by choos-
ing as split ting at tr ibute for a node w 
an attribute that minimizes the distance 

( , ) ( | ) ( | ).
w w w w w w

C A C A A C
S S S S S Sd H H= +  

This idea has been developed by López de Mànta-
ras (1991) for the metric d1 induced by Shannon’s 
entropy. Since one could obtain better classifiers 
for various data sets and user needs by using values 
of  β that are different from one, our approach is 
an improvement of previous results.

Besides being geometrically intuitive, the 
minimal distance criterion has the advantage of 
limiting both conditional entropies ( | )

w w

C A
S SH  

and ( | ).
w w

A C
S SH  The first limitation insures that 

the choice of the splitting attribute will provide 
a high information gain; the second limitation 
insures that attributes with large domains are not 
favored over attributes with smaller domains.

Suppose that in the process of building a 
decision tree for an object system T = (T,II) we 
constructed a stump of the tree T  that has m 
leaves and that the sets of objects that correspond 
to these leaves are S1,...,Sn. This means that we 
created the partition k = {S1,...,Sn} ∈ PARTS(S), 
so k = wS1

 +...+wSn
. We choose to split the node 

vi using as splitting attribute the attribute A that 
minimizes the distance ( , ).

i i

C A
S Sd  The new 

partition k ' that replaces k is:

1 1 1 .' ... ...
i i i n

A
S S S S S- +

= + + + + + +

Note that k ≤ k '.  Therefore, we have that which is 
seen in Box 8 because [πC ∧ k, k, wS]. This shows 
that as the construction of the tree advances the 
current partition k gets closer to the partition πC 
∧ k. More significantly, as the stump of the tree 
grows, k gets closer to the class partition πC. 



��  

Metric Methods in Data Mining

Indeed, by theorem 8 we can write:

1

1

( , ) ( , ... )

| |
( , ) ( | ),

| |

n

j j

C C
S S

n
j C C

S S
j

d d

S
d H

S=

= + +

 
= + 

 
∑

where q = {S1,...,Sn}. Similarly, we can write that 
which is seen in Box 9.

These equalities imply that which is seen in 
Box 10.

We tested our approach on a number of data 
sets from the University of California Irvine 
(see Blake & Merz, 1978). The results shown in 
Table 1 are fairly typical. Decision trees were 
constructed using metrics dβ, where β varied 
between 0.25 and 2.50. Note that for β =1 the 
metric algorithm coincides with the approach of 
Lopez de Màntaras (1991). 

If the choices of the node and the splitting at-

tribute are made such that  ( ) ( , ),
i i i

C C A
S S SH d>  

then the distance between πC and the current 
partition k of the tree stump will decrease. Since 
the distance between πC ∧ k and k decreases in 
any case when the tree is expanded it follows 
that the “triangle” determined by πC, πC ∧ k, 
and k will shrink during the construction of the 
decision tree.

In all cases, accurracy was assessed through 
10-fold crossvalidation. We also built standard 
decision trees using the J48 technique of the 
well-known WEKA package (see Witten & 
Frank, 2005), which yielded the results shown 
in Table 2.

The experimental evidence shows that β can be 
adapted such that accuracy is comparable, or better 
than the standard algorithm. The size of the trees 
and the number of leaves show that the proposed 
approach to decision trees results consistently in 
smaller trees with fewer leaves.

( , ) ( , ) ( , )

( ) ( ) ( ') ( '),

C C
S S

C C

d d d

H H H H

∧ = ∧ -

= ∧ - ≥ ∧ -

Box 8.

1 1 1

1,

') ( , ... ... )

| | | |( , ) ( , ) ( | ).
| | | |

i i i n

j j i i

C A
S S S S S

n
j C C C Ci

S S S S
j j i

d

S Sd d H
S S

- +

= ≠

= + + + + + +

   
= + +   

  
∑

Box 9.

Box 10.

( )

( )

| |( , ) ( , ') ( , ) ( , )
| |

| | ( ) ( , ) .
| |

i i i i

i i i

C C C C Ai
S S S S

C C Ai
S S S

Sd d d d
S

S H d
S

 
- = - 

 

 
= - 
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Table 1. Decision trees constructed by using the metric splitting criterion

Audiology

β Accuracy Size Leaves

2.50 34.81 50 28

2.25 35.99 31 17

2.00 37.76 33 18

1.75 36.28 29 16

1.50 41.89 40 22

1.25 42.18 38 21

1.00 42.48 81 45

0.75 41.30 48 27

0.50 43.36 62 35

0.25 44.25 56 32

Hepatitis

β Accuracy Size Leaves

2.50 81.94 15 8

2.25 81.94 9 5

2.00 81.94 9 5

1.75 83.23 9 5

1.50 84.52 9 5

1.25 84.52 11 6

1.00 85.16 11 6

0.75 85.81 9 5

0.50 83.23 5 3

0.25 82.58 5 3

Primary Tumor

β Accuracy Size Leaves

2.50 34.81 50 28

2.25 35.99 31 17

2.00 37.76 33 18

1.75 36.28 29 16

1.50 41.89 40 22

1.25 42.18 38 21

1.00 42.48 81 45

0.75 41.30 48 27

0.50 43.36 62 35

0.25 44.25 56 32

Vote

β Accuracy Size Leaves

2.50 94.94 7 4

2.25 94.94 7 4

2.00 94.94 7 4

1.75 94.94 7 4

1.50 95.17 7 4

1.25 95.17 7 4

1.00 95.17 7 4

0.75 94.94 7 4

0.50 95.17 9 5

0.25 95.17 9 5

Table 2. Decision trees built by using J48

Data Set Accuracy Size Leaves
Audiology 77.88 54 32
Hepatitis 83.87 21 11
Primary Tumor 39.82 88 47
Vote 94.94 7 4



14  

Metric Methods in Data Mining

Incremental clusterIng of 
categorIcal Data

Clustering is an unsupervised learning process 
that partitions data such that similar data items 
are grouped together in sets referred to as clus-
ters. This activity is important for condensing 
and identifying patterns in data. Despite the 
substantial effort invested in researching cluster-
ing algorithms by the data mining community, 
there are still many difficulties to overcome in 
building clustering algorithms. Indeed, as pointed 
in Jain (1999) “there is no clustering technique 
that is universally applicable in uncovering the 
variety of structures present in multidimensional 
data sets.”

We focus on an incremental clustering algo-
rithm that can be applied to nominal data, that 
is, to data whose attributes have no particular 
natural ordering. In general clustering, objects 
to be clustered are represented as points in an 
n-dimensional space Rn and standard distances, 
such as the Euclidean distance is used to evaluate 
similarity between objects. For objects whose at-
tributes are nominal (e.g., color, shape, diagnostic, 
etc.), no such natural representation of objects is 
possible, which leaves only the Hamming dis-
tance as a dissimilarity measure, a poor choice 
for discriminating among multivalued attributes 
of objects.

Incremental clustering has attracted a substan-
tial amount of attention starting with Hartigan 
(1975). His algorithm was implemented in Carpen-
ter and Grossberg (1990). A seminal paper, Fisher 
(1987), introduced COBWEB, an incremental 

clustering algorithm that involved restructurings 
of the clusters in addition to the incremental ad-
ditions of objects. Incremental clustering related 
to dynamic aspects of databases were discussed 
in Can (1993) and Can et al. (1995). It is also no-
table that incremental clustering has been used in 
a variety of applications: Charikar et al. (1997), 
Ester et al. (1998), Langford et al. (2001) and Lin 
et al. (2004)). Incremental clustering is interesting 
because the main memory usage is minimal since 
there is no need to keep in memory the mutual 
distances between objects and the algorithms 
are scalable with respect to the size of the set of 
objects and the number of attributes.

A clustering of an object system (T, H) is de-
fined as a partition k of the set of objects T such 
that similar objects belong to the same blocks of 
the partition, and objects that belong to distinct 
blocks are dissimilar. We seek to find clusterings 
starting from their relationships with partitions 
induced by attributes. As we shall see, this is a 
natural approach for nominal data.

Our clustering algorithm was introduced in 
Simovici, Singla and Kuperberg (2004); a semisu-
pervised extension was discussed in Simovici 
and Singla (2005). We used the metric space 
(PARTS(S), d), where d is a multiple of the d2 
metric given by that which is seen in Box 11.

This metric has been studied in Barthélemy 
(1978) and  Barthélemy and Leclerc (1978) and 
in Monjardet (1981), and we will refer to it as 
the Barthélemy-Monjardet distance. A special 
property of this metric allows the formulation of 
an incremental clustering algorithm.

Box 11.

where p = {B1,...,Bm} and s = {C1,...,Cn}. 

2
2 2 2

2
1 1 1 1

| |( , ) | | | | 2 | | ( , ),
2

m n m n

i j i j
i j i j

Sd B C B C d
= = = =

= + − ∩ =∑ ∑ ∑∑



  ��

Metric Methods in Data Mining

The main idea of the algorithm is to seek a 
clustering k = {C1,...,Cn} ∈ PARTS(T), where T 
is the set of objects such that the total distance 
from k to the partitions of the attributes:

1

( ) ( , )i

n
A

i

D d
=

= ∑  

is minimal. The definition of d allows us to 
write:

2 2 2

1 1 1 1

( , ) | | | | 2 | | .
A A

j j

m mn n
A A A

i a i a
i j i j

d C B C B
= = = =

= + - ∩∑ ∑ ∑∑
Suppose now that t is a new object, t ∉ T, and let 
Z = T ∪ {t}. The following cases may occur:

1. The object t is added to an existing cluster 
Ck.

2. A new cluster, Cn+1 is created that consists 
only of t.

Also, the partition πA is modified by adding t to the 
block [ ]

A
t AB , which corresponds to the value t[A] of 

the A-component of t. In the first case let:

{}{ }
{}{ }1

1 1 1

[ ]

,..., , , ,..., ,

' ,..., ,...,
A

k k k k n

A A A A
a t A m

C C C t C C

B B t B

- += ∪

= ∪

be the partitions of Z. Now, we have what is 
shown in Box 12.

The minimal increase of d(kk, π
A') is given by 

[ ]min 2 | |.A
k k t A

A

C B⊕∑
In the second case we deal with the parti-

tions:

{}{ }
{}{ }1

1

[ ]

,..., , ,

' ,..., ,...,
A

k n

A A A A
a t A m

C C t

B B t B

=

= ∪

and we have [ ]( ', ') ( , ) 2 | | .A A A
t Ad d B- =  

Consequently, we have:

 [ ]( ') ( ) 2 | |A
k t A

A

D D C B- = ⊕∑
in the first case and  in the second case. Thus, 
if: 

[ ]( ') ( ) 2 | |A
t A

A

D D B- = ∑
we add t to a cluster Ck for which:
  

[ ]min | |A
k k t A

A

C B⊕∑  

is minimal; otherwise, we create a new one-object 
cluster. 

Incremental clustering algorithms are affected, 
in general, by the order in which objects are pro-
cessed by the clustering algorithm. Moreover, 
as pointed out in Cornuéjols (1993), each such 
algorithm proceeds typically in a hill-climbing 
fashion that yields local minima rather than global 
ones. For some incremental clustering algorithms 
certain object orderings may result in rather poor 
clusterings. To diminish the ordering effect prob-
lem we expand the initial algorithm by adopting 
the “not-yet” technique introduced by Roure and 
Talavera (1998). The basic idea is that a new cluster 
is created only when the inequality:

Box 12.

2 2 2 2
[ ] [ ] [ ]

[ ]

( , ') ( , ) (| | 1) | | (| | 1) | | 2(| | 1)

2 | | .

A A A A A
k k k t A t A k t A

A
k t A

d d C C B B C B

C B

- = + - + + - - ∩ +

= ⊕
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[ ]

[ ]

| |
( ) ,

min | |

A
t A

A
A

k k t A
A

B
r t

C B
= <

⊕

∑
∑

is satisfied, that is, only when the effect of add-
ing the object t on the total distance is significant 
enough. Here x is a parameter provided by the 
user, such that x ≤ 1.

Now we formulate a metric incremental 
clustering algorithm (referred to as AMICA, an 
acronym of the previous five words) that is us-
ing the properties of distance d. The variable nc 
denotes the current number of clusters. 

If  x < r(t) ≤ 1 we place the object t in a buffer 
known as the NOT-YET buffer. If r(t) ≤ x a new 
cluster that consists of the object t is created. 
Otherwise, that is, if r(t) > 1, the object t is placed 
in an existing cluster Ck that minimizes:

[ ]min | |;A
k k t A

A

C B⊕∑  

this limits the number of new singleton clusters that 
would be otherwise created. After all objects of the 
set T have been examined, the objects contained 
by the NOT-YET buffer are processed with x =1. 
This prevents new insertions in the buffer and 
results in either placing these objects in existing 
clusters or in creating new clusters. The pseudo-
code of the algorithm is given next:

Input: Data set T and threshold x
output: Clustering {C�,...,Cnc} 
Method: nc = 0; l = �

while (T ≠ ∅) do
   select an object t;
   T = T – {t};
 if [ ] 1 [ ]| | min | |A A

t A k nc k t A
A A

B C B≤ ≤≤ ⊕∑ ∑
   
 then 
  nc + +; 
  create a new single-object cluster Cnc = {t}; 
 else

 
        
   

[ ]

[ ]

| |
( ) ;

min | |

A
t A

A
A

k k t A
A

B
r t

C B
=

⊕

∑
∑

 if (r(t) ≥ 1)

  then
   [ ]arg min | |A

k t A
Ak

k C B= ⊕∑ ; 
        
   add t to cluster Ck;
  else /* this means that x < r(t) ≤ 1 */ 
   place t in NOT-YET buffer;
 end if;
endwhile;
process objects in the NOT-YET buffer as above with 
x = �.

We applied AMICA to synthetic data sets pro-
duced by an algorithm that generates clusters 
of objects having real-numbered components 
grouped around a specified number of centroids. 
The resulting tuples were discretized using a 
specified number of discretization intervals, 
which allowed us to treat the data as nominal. 
The experiments were applied to several data 
sets with an increasing number of tuples and 
increased dimensionality and using several per-
mutations of the set of objects. All experiments 
used x = 0.95. 

The stability of the obtained clusterings is quite 
remarkable. For example, in an experiment applied 
to a set that consists of 10,000 objects (grouped by 
the synthetic data algorithm around 6 centroids) 
a first pass of the algorithm produced 11 clusters; 
however, most objects (9895) are concentrated in 
the top 6 clusters, which approximate very well 
the “natural” clusters produced by the synthetic 
algorithm. 

Table 3 compares the clusters produced by 
the first run of the algorithm with the cluster 
produced from a data set obtained by applying a 
random permutation.

Note that the clusters are stable; they remain 
almost invariant with the exception of their 
numbering. Similar results were obtained for 
other random permutations and collections of 
objects.

As expected with incremental clustering algo-
rithms, the time requirements scale up very well 
with the number of tuples. On an IBM T20 system 
equipped with a 700 MHz Pentium III and with a 
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256 MB RAM, we obtained the results shown in 
Table 4 for three randomly chosen permutations 
of each set of objects. 

Another series of experiments involved the 
application of the algorithm to databases that 
contain nominal data. We applied AMICA to 
the mushroom data set from the standard UCI 
data mining collection (see Blake & Merz, 1998). 
The data set contains 8124 mushroom records 
and is typically used as test set for classifica-
tion algorithms. In classification experiments 
the task is to construct a classifier that is able 
to predict the poisonous/edible character of the 
mushrooms based on the values of the attributes 
of the mushrooms. We discarded the class attri-

bute (poisonous/edible) and applied AMICA to 
the remaining data set. Then, we identified the 
edible/poisonous character of mushrooms that are 
grouped together in the same cluster. This yields 
the clusters C1,...,C9.

Note that in almost all resulting clusters there 
is a dominant character, and for five out of the total 
of nine clusters there is complete homogeneity.

A study of the stability of the clusters similar 
to the one performed for synthetic data shows 
the same stability relative to input orderings. The 
clusters remain essentially stable under input data 
permutations (with the exception of the order in 
which they are created).

Table 3. Comparison between clusters produced by successive runs

Initial Run Random Permutation

Cluster Size Cluster Size Distribution
(Original Cluster)

1 1548 1 1692 1692 (2)

2 1693 2 1552 1548 (1),3 (3), 1 (2)

3 1655 3 1672 1672 (5)

4 1711 4 1711 1711 (4)

5 1672 5 1652 1652 (3)

6 1616 6 1616 1616(6)

7 1 7 85 85 (8)

8 85 8 10 10 (9)

9 10 9 8 8 (10)

10 8 10 1 1 (11)

11 1 11 1 1 (7)

Table 4. Time for three random permutations

Number of 
Objects

Time for 3
permutations (ms)

Average 
time (ms)

2000 131, 140, 154 141.7

5000 410, 381, 432 407.7

10000 782,761, 831 794.7

20000 1103, 1148, 1061 1104
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Thus, AMICA provides good quality, stable 
clusterings for nominal data, an area of clustering 
that is less explored than the standard clustering 
algorithms that act on ordinal data. Clusterings 
produced by the algorithm show a rather low 
sensitivity to input orderings.

clusterInG feAtures And 
feAture selectIon 

The performance, robustness and usefulness 
of classification algorithms are improved when 
relatively few features are involved in the clas-
sification. The main idea of this section, which 
was developed in Butterworth et al. (2005), is 
to introduce an algorithm for feature selection 
that clusters attributes using a special metric, 
and then use a hierarchical clustering for feature 
selection.

Hierarchical algorithms generate clusters that 
are placed in a cluster tree, which is commonly 
known as a dendrogram. Clusterings are obtained 
by extracting those clusters that are situated at a 
given height in this tree.

We show that good classifiers can be built by 
using a small number of attributes located at the 
centers of the clusters identified in the dendrogram. 
This type of data compression can be achieved 

with little or no penalty in terms of the accuracy 
of the classifier produced. The clustering of at-
tributes helps the user to understand the structure 
of data, the relative importance of attributes. 
Alternative feature selection methods, mentioned 
earlier, are excellent in reducing the data without 
having a severe impact on the accuracy of classi-
fiers; however, such methods cannot identify how 
attributes are related to each other.

Let m, M ∈ N be two natural numbers such 
that m ≤ M. Denote by PARTS(S)m,M the set of 
partitions of S such that for every block B ∈ π we 
have m ≤ | B | ≤ M. The lower valuation v defined 
on PARTS(S) is given by:

2

1

( ) | |
p

i
i

v D
=

= ∑ , 

where q = {D1,...,Dp}.

Let π = {B1,...,Bn}, σ = {C1,...,Cp} be two partitions 
of a set S. The contingency matrix of π, σ is the 
matrix Pπ,σ whose entries are given by pij = | Bi 
∩ Cj| for 1 ≤ i ≤ n and 1 ≤ j ≤ p. The Pearson 2

,   
association index of this contingency matrix can 
be written in our framework as:

2
2

,
( | || |)

.
| || |

ij i j

i ji j

p B C
B C

-
= ∑∑

Class
number

Poisonous/Edible Total Dominant
Group (%)

1 825/2752 3557 76.9%

2 8/1050 1058 99.2%

3 1304/0 1304 100%

4 0/163 163 100%

5 1735/28 1763 98.4%

6 0/7 7 100%

7 1/192 192 100%

8 36/16 52 69%

9 8/0 8 100%

Table 5. Purity of clusters for the mushrooms data set
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It is well known that the asymptotic distribution 
of this index is a c2 -distribution with (n-1)(p-1) 
degrees of freedom. The next statement suggests 
that partitions that are correlated are close in the 
sense of the Barthélemy-Monjardet distance; 
therefore, if attributes are clustered using the 
corresponding distance between partitions we 
could replace clusters with their centroids and, 
thereby, drastically reduce the number of attributes 
involved in a classification without significant de-
creases in accuracy of the resulting classifiers. 

Theorem 12: Let S be a finite set and let p,s 
∈ PARTS(S)m,M, where π = {B1,...,Bn} and σ =  
{C1,...,Cp}. We have that which is seen in Box 
13.

Thus, the Pearson coefficient decreases with 
the distance and, thus, the probability that the 
partitions π and σ and are independent increases 
with the distance. 

We experimented with several data sets 
from the UCI dataset repository (Blake & Merz, 
1998); here we discuss only the results obtained 
with the votes and zoo datasets, which have a 
relative small number of categorical features. In 
each case, starting from the matrix (d(πAi, πAj)) 
of Barthélemy-Monjardet distances between the 
partitions of the attributes A1,...,An, we clustered 
the attributes using AGNES, an agglomerative 
hierarchical algorithm described in 

Kaufman and Rousseeuw (1990) that is imple-
mented as a component of the cluster package of 
system R (see Maindonald & Brown, 2003).

Clusterings were extracted from the tree 
produced by the algorithm by cutting the tree 
at various heights starting with the maximum 
height of the tree created above (corresponding 

to a single cluster) and working down to a height 
of 0 (which consists of single-attribute clusters). 
A “representative” attribute was created for each 
cluster as the attribute that has the minimum to-
tal distance to the other members of the cluster, 
again using the Barthélemy-Monjardet distance. 
The J48 and the Naïve Bayes algorithms of the 
WEKA package from Witten and Frank (2005) 
were used for constructing classifiers on data sets 
obtained by projecting the initial data sets on the 
sets of representative attributes.

The dataset votes records the votes of 435 U.S. 
Congressmen on 15 key questions, where each 
attribute can have the value “y”, “n”, or “?” (for 
abstention), and each Congressman is classified 
as a Democrat or Republican. 

The attributes of this data set are listed in 
Table 6.

It is interesting to note that by applying the AG-
NES clustering algorithm with the Ward method 
of computing the intercluster distance the voting 
issues group naturally into clusters that involve 
larger issues, as shown in Figure 1.

For example, “El Salvador aid,” “Aid to Nica-
raguan contras,” “Mx missile” and “Antisatellite 
test ban” are grouped quite early into a cluster that 
can be described as dealing with defense policies. 
Similarly, social budgetary legislation issues such 
as “Budget resolution,” “Physician fee freeze” and 
“Education spending,” are grouped together.

Two types of classifiers (J48 and Naïve Bayes) 
were generated using ten-fold cross validation by 
extracting centrally located attributes from cluster 
obtained by cutting the dendrogram at successive 
levels. The accuracy of these classifiers is shown 
in Figure 2.

Box 13.

2 2 2
,2 2

( ) ( ) ( , ) ( ) ( ) ( , )2 | | 2 | | .
2 2

v v d v v dnp S np S
M m

+ - + -- + ≤ ≤ - +



�0  

Metric Methods in Data Mining

1 Handicapped infants 9 Mx missile

2 Water project cost sharing 10 Immigration

3 Budget resolution 11 Syn fuels corporation cutback

4 Physician fee freeze 12 Education spending

5 El Salvador aid 13 Superfund right to sue

6 Religious groups in schools 14 Crime

7 Antisatellite test ban 15 Duty-free exports

8 Aid to Nicaraguan contras

Table 6. 

Figure 2. Dendrogram of votes data set using AGNES and the Ward method
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This experiment shows that our method identi-
fies the most influential attribute 5 (in this case 
“El_Salvador_aid”). So, in addition to reducing 
number of attributes, the proposed methodology 
allows us to assess the relative importance of 
attributes.

A similar study was undertaken for the zoo 
database, after eliminating the attribute animal 
which determines uniquely the type of the animal. 
Starting from a dendrogram build by using the 
Ward method shown in Figure 3 we constructed 
J48 and Naïve Bayes classifiers for several sets 
of attributes obtained as successive sections of 
the cluster tree. 

The attributes of this data set are listed in 
Table 8.

The results are shown in Figure 3.  Note that 
attributes that are biologically correlated (e.g., 
hair, milk and eggs, or aquatic, breathes and fins) 
belong to relatively early clusters.

The main interest of the proposed approach to 
attribute selection is the possibility of the supervi-

sion of the process allowing the user to opt between 
quasi-equivalent attributes (that is, attributes that 
are close relatively to the Barthélemy-Monjardet 
distance) in order to produce more meaningful 
classifiers.

We compared our approach with two existing 
attribute set selection techniques: the correlation-
based feature (CSF) selection (developed in Hall 
(1999) and incorporated in the WEKA package) 
and the wrapper technique, using the “best first” 
and the greedy method as search methods, and 
the J48 classifier for the classifier incorporated by 
the wrapper. The comparative results for the zoo 
database show that using either the “best first” or 
the “greedy stepwise” search methods in the case 
of CSF the accuracy for the J48 classifier is 91.08%, 
and for the naïve Bayes classifier is 85.04%; the 
corresponding numbers for the wrapper method 
with J48 are 96.03% and 92.07%, respectively. 
These results suggest that this method is not as 
good for accuracy as the wrapper method or CSF. 
However, the tree of attributes helps to understand 

Table 7. Accuracy of classifiers for the votes data set

Attribute Set
(class attribute not listed)

J48% ND%

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 96.78 90.34

1,2,3,4,5,6,7,9,10,11,12,13,14,15 96.78 91.03

1,2,3,4,5,6,7,10,11,12,13,14,15 96.55 91.26

1,2,4,5,6,7,10,11,12,13,14,15 95.17 92.18

1,2,4,5,6,10,11,12,13,14,15 95.17 92.64

1,2,4,5,6,10,11,13,14,15 95.40 92.18

1,2,6,8,10,11,13,14,15 86.20 85.28

1,2,8,10,11,13,14,15 86.20 85.74

1,2,8,10,11,14,15 84.13 85.74

1,2,8,10,11,14 83.69 85.74

2,8,10,11,14 83.67 84.36

2,5,10,11 88.73 88.50

2,5,10 84.82 84.82

2,5 84.82 84.82

5 84.82 84.82
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1 hair 10 breathes

2 feathers 11 venomous

3 eggs 12 fins

4 milk 13 legs

5 airborne 14 tail

6 aquatic 15 domestic

7 predator 16 cat size

8 toothed 17 type

9 backbone

Figure 3. Dendrogram of zoo dataset using AGNES and the Ward method

Table 8.
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the relationships between attributes and their 
relative importance.

Attribute clustering helps to build classifiers 
in a semisupervised manner allowing analysts a 
certain degree of choice in the selection of the 
features that may be considered by classifiers, and 
illuminating relationships between attributes and 
their relative importance for classification.

A MetrIc APProAch to 
dIscretIzAtIon 

Frequently, data sets have attributes with nu-
merical domains which makes them unsuitable for 
certain data mining algorithms that deal mainly 
with nominal attributes, such as decision trees 
and naïve Bayes classifiers. To use such algo-
rithms we need to replace numerical attributes 
with nominal attributes that represent intervals 
of numerical domains with discrete values. This 

process, known to as discretization, has received 
a great deal of attention in the data mining lit-
erature and includes a variety of ideas ranging 
from fixed k-interval discretization (Dougherty, 
Kohavi, & Sahami, 1995), fuzzy discretization 
(see Kononenko, 1992; 1993), Shannon-entropy 
discretization due to Fayyad and Irani presented 
in Fayyad (1991) and Fayyad and Irani (1993), 
proportional k-interval discretization (see Yang & 
Webb, 2001; 2003), or techniques that are capable 
of dealing with highly dependent attributes (cf. 
Robnik & Kononenko, 1995).

The discretization process can be described 
generically as follows. Let B be a numerical at-
tribute of a set of objects. The set of values of the 
components of these objects that correspond to 
the attribute B is the active domain of B and is 
denoted by adom(B). To discretize B we select a 
sequence of numbers t1 < t2 <...< tl in adom(B). 
Next, the attribute B is replaced by the nominal 
attribute B’ that has l+1 distinct values in its active 

Table 9. Accuracy of classifiers for the zoo data set

Attribute Set
(class attribute not listed)

J48% NB%

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16  92.07  93.06 

1,2,4,5,6,7,8,9,10,11,12,13,14,15,16  92.07 92.07

2,4,5,6,7,8,9,10,11,12,13,14,15,16  87.12  88.11

2,4,5,6,7,8,9,10,11,12,13,15,16 87.12  88.11

2,4,6,7,8,9,10,11,12,13,15,16  88.11  87.12

2,4,6,7,8,9,10,11,13,15,16 91.08  91.08

2,4,6,7,8,9,10,11,13,16  89.10  90.09

2,4,7,8,9,10,11,13,16  86.13  90.09

2,4,7,9,10,11,13,16  84.15 90.09

2,4,7,9,10,11,13  87.12  89.10

4,5,7,9,10,11 88.11  88.11

4,5,7,9,10  88.11  90.09

4,5,9,10  89.10  91.09

4,5,10  73.26  73.26

4,10  73.26  73.26

4  60.39  60.39 
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domain {k0, k1,...kl}. Each B -component b of an 
object t is replaced by the discretized B’-compo-
nent k defined by k =k0 if b ≤ t1, t = k if ti < b ≤ ti+1 
for 1 ≤ i ≤ l –1, and k =kl if tl < b. The numbers t1, 
t2,...tl define the discretization process and  they 
will be referred to as class separators. 

There are two types of discretization (see Wit-
ten & Frank, 2005): unsupervised discretization, 
where the discretization takes place without any 
knowledge of the classes to which objects belong, 
and supervised discretization which takes into 
account the classes of the objects. Our approach 
involves supervised discretization. Within our 
framework, to discretize an attribute B amounts 
to constructing a partition of the active domain 
adom(B) taking into account the partition πA de-
termined by the nominal class attribute A. 

Partitions of active attribute domains induce 
partitions on the set of objects. Namely, the parti-
tion of the set of objects T that corresponds to a 
partition q of adom(B), where B is a numerical 
attribute, is denoted by q* . A block of q* consists 
of all objects whose B -components belong to 
the same block of q. For the special case when 
q=aadom(B) observe that q* = πB.

Let P = (t1,...,tl) a sequence of class separators 
of the active domain of an attribute B, where 
t1 < t2 <...< tl. This set of cut points creates a 
partition 0{ ,..., }P

B lQ Q=  of adom(B) where Q 
1{ ( ) | }i i iQ b adom B t b t += ∈ ≤ <  for 0 ≤ i ≤ l, where 

t0 = –∞ and tl+1 = ∞. 
It is immediate that for two sets of cut points 

P, P ' we have ' '.P P P P
B B B

∪ = ∧  If the sequence P 
consists of a single cut point t we shall denote P

B   
simply by .t

B  The discretization process consists 
of replacing each value that falls in the block iQ  
of P

B  by i for 0 ≤ i ≤ l.
Suppose that the list of objects sorted on the 

values of a numerical attribute B is t1,...,tn and let 
t1[B],...,tn[B] be the sequence of B -components of 
those objects, where t1[B] <...< tn[B]. For a nominal 
attribute A define the partition πB,A of adom(B) 
as follows. A block of πB,A consists of a maximal 
subsequence ti[B],...,t1[B] of the previous sequence 

such that every object ti,...,tl of this subsequence 
belongs to the same block K of the partition πA. 
If x ∈ adom(B), we shall denote the block of πB,A 
that contains x by 〈x〉. The boundary points of the 
partition πB,A are the least and the largest elements 
of each of the blocks of the partition πB,A. The least 
and the largest elements of 〈x〉 are denoted by x↓  
and x↑, respectively. It is clear that πB.A ≤ πA for 
any attribute B.

Example 4

Let t1,...,t9  be a collection of nine objects such that 
the sequence t1[B],...,t9 [B] is sorted in increasing 
order of the value of the B -components as seen 
in Table 10.

The partition πA has two blocks corresponding 
to the values “Y” and “N” and is given by

{ } { }{ }1 3 4 7 8 9 2 5 6, , , , , , , , .A t t t t t t t t t=

The partition πB,A is: 

{ } { } { } { } { }{ }, 1 2 3 4 5 6 7 8 9, , , , , , , , .B A t t t t t t t t t=

The blocks of this partition correspond to the 
longest subsequences of the sequence t1,...,t9 
that consists of objects that belong to the same 
πA-class.

Fayyad (1991) showed that to obtain the 
least value of the Shannon’s conditional entropy 

( | )A P
BH *   the cut points of P must be chosen 

among the boundary points of the partition πB,A. 
This is a powerful result that drastically limits 
the number of possible cut points and improves 
the tractability of the discretization.

We present two new basic ideas: a generaliza-
tion of Fayyad-Irani discretization techniques 
that relies on a metric on partitions defined 
by generalized entropy, and a new geometric 
criterion for halting the discretization process. 
With an appropriate choice of the parameters of 
the discretization process the resulting decision 
trees are smaller, have fewer leaves, and display 
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higher levels of accuracy as verified by stratified 
cross-validation; similarly, naïve Bayes classifiers 
applied to data discretized by our algorithm yield 
smaller error rates.

Our main results show that the same choice 
of cut points must be made for a broader class of 
impurity measures, namely the impurity measures 
related to generalized conditional entropy. More-
over, when the purity of the partition πA is replaced 
as a discretization criterion by the minimality of 
the entropic distance between the partitions πA 
and P

B* the same method for selecting cut points 
can be applied. This is a generalization of the 
approach proposed in Cerquides and López de 
Màntaras (1997).

We are concerned with supervised discreti-
zation, that is, with discretization of attributes 
that takes into account the classes where the 
objects belong. Suppose that the class of objects 
is determined by the nominal attribute A and we 
need to discretize a numerical attribute B. The 

discretization of B aims to construct a set P of 
cut points of adom(B) such that the blocks of  πA 
are as pure as possible relative to the partition 

P
B*, that is, the conditional entropy ( | )A P

BH *  
is minimal.

The following theorem extends a result of 
Fayyad (1991):

Theorem 13: Let T be a collection of objects, 
where the class of an object is determined by the 
attribute A and let β ∈ (1,2]. If P is a set of cut points 
such that the conditional entropy ( | )A P

BH *  is 
minimal among the set of cut points with the same 
number of elements, then P consists of boundary 
points of the partition πB,A of adom(B).

The next theorem is a companion to Fayyad’s 
(1991) result and makes use of the same hypothesis 
as theorem 13.

… B … A

1t
… 95.2 … Y

2t
… 110.1 … N

3t
… 120.0 … Y

4t
… 125.5 … Y

5t
… 130.1 … N

6t
… 140.0 … N

7t
… 140.5 … Y

8t
… 168.2 … Y

9t
… 190.5 … Y

Table 10.
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Theorem 14: Let β be a number, β ∈ (1,2]. If 
P is a set of cut points of adom(B) such that the 
distance ( | )A P

Bd *  is minimal among the set 
of cut points with the same number of elements, 
then P consists of boundary points of the partition 
πB,A of adom(B).

This result plays a key role. To discretize 
adom(B)we seek a set of cut points P such that:

( , ) ( | ) ( | )A P A P P A
B B Bd H H* * *= +  

is minimal. In other words, we shall seek a set of 
cut points such that the partition B

B* induced on 
the set of objects T is as close as possible to the 
target partition πA.

Initially, before adding cut points, we 
have P = ∅, { },B

B S S* = =  and therefore 
( | ) ( ).A A

SH H=  Observe that when the set 
P grows the entropy ( | )A P

BH *  decreases. Note 
that the use of conditional entropy ( | )A P

BH *  
tends to favor large cut point sets for which the 
partition B

B* is small in the partial ordered set 
(PARTS(P),≤). In the extreme case, every point 
would be a cut point, a situation that is clearly 
unacceptable. Fayyad-Irani (Fayyad & Irani, 
1993) technique halts the discretization process 
using the principle of minimum description. We 
adopt another technique that has the advantage of 
being geometrically intuitive and produces very 
good experimental results.

Using the distance  ( | )A P
Bd *  the decrease 

of  ( | )A P
BH *  when the set of cut points grows 

is balanced by the increase in ( | )P A
BH * . Note 

that initially we have Hβ(wT | π
A) = 0. The dis-

cretization process can thus be halted when the 
distance ( | )A P

Bd *   stops decreasing. Thus, we 
retain as a set of cut points for discretization the 
set P that determines the closest partition to the 
class partition πA. As a result, we obtain good 
discretizations (as evaluated through the results 
of various classifiers that use the discretize data) 
with relatively small cut point sets. 

The greedy algorithm shown below is used for 
discretizing an attribute B. It makes successive 
passes over the table and, at each pass it adds a 
new cut point chosen among the boundary points 
of πB,A.

Input: An object system (T, H), a class attribute A and a 
real-valued attribute B

output: A discretized attribute B
Method: Sort (T, H) on attribute B; 
 compute the set BP of boundary points of partition 

πB,A; 
 P = ∅, d = ∞; 

while BP ≠  ∅ do
 let { }arg min ( , );A P p

p BP Bp d ∪
∈ *=  

 if { }( , )A P p
Bd d ∪

*≥  then 
  begin 
   P = P ∪ {t}; 
   BP = BP – {t}; 
   ( , );A P

Bd d *=
  end 
            else 
 exit while loop; 
end while; 
for 0{ ,..., }P

B lQ Q* =  replace every value in iQ  by i for 0 
≤ i ≤ l.

The while loop runs for as long as candidate 
boundary points exist, and it is possible to find a 
new cut point p such that the distance ( | )A P

Bd *  
is less than the previous distance ( | )A P

Bd * . An 
experiment performed on a synthetic database 
shows that a substantial amount of time (about 
78% of the total time) is spent on decreasing 
the distance by the last 1%. Therefore, in prac-
tice we run a search for a new cut point only if: 
| ( , ) | 0.01 .A P

Bd d d*- >

To form an idea on the evolution of the distance 
between πA = {P1,...,Pn} and the partition of ob-
jects determined by the cut points P

B* let p ∈ BP  
be a new cut point added to the set P. It is clear 
that the partition P

B* covers the partition { }P p
B

∪
*   

because { }P p
B

∪
*  is obtained by splitting a block of  

P
B*. Without loss of generality we assume that the 

blocks 1mQ -  and mQ  of  { }P p
B

∪
*  result from the split 

of the block 1m mQ Q- ∪  of  P
B*. Since β > 1 we have 

{ }( , ) ( , )P pA A P
B Bd d∪

* *<  if and only if:
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1 1 1 1 1

2 2

1
1 1 1

| 2

2

n m n m n

i j i j i
i j i j i

m n m

j m m i j
j i j

P Q P Q P

Q Q Q P Q

= = = = =

- -

-
= = =

+ - ∩ < +

+ ∪ - ∩

∑ ∑ ∑∑ ∑

∑ ∑∑

which is equivalent to:

1 1
1 1

1 1
1

| | | | 2 | | 2 | |

| | 2 (| | | |) .

n n

m m i m i m
i i

n

m m i m i m
i

Q Q P Q P Q

Q Q P Q P Q

- -
= =

- -
=

+ - ∩ - ∩

< ∪ - ∩ + ∩

∑ ∑

∑

Suppose that 1m mQ Q- ∪  is intersected by only 
by P1 and P2 and that β = 2Then, the previous 
inequality that describes the condition under 
which a decrease of ( | )A P

Bd *  can be obtained 
becomes:

1 1 2 1 1 2(| | | |)(| | | |) 0m m m mP Q P Q P Q P Q- -∩ - ∩ ∩ - ∩ <

and so, the distance may be decreased by splitting 
a block 1m mQ Q- ∪  into 1mQ -  and mQ  only when the 
distribution of the fragments of the blocks P1 and 
P2  in the prospective blocks 1mQ -  and mQ  satisfies 
the previous condition. If the block 1m mQ Q- ∪  of 
the partition P

B* contains a unique boundary point, 
then choosing that boundary point as a cut point 
will decrease the distance. 

We tested our discretization algorithm on 
several machine learning data sets from UCI 
data sets that have numerical attributes. After 
discretizations performed with several values of 
β (typically with β ∈ {1.5, 1.8, 1.9, 2}) we built the 
decision trees on the discretized data sets using 
the WEKA J48 variant of C4.5. The size, number 
of leaves and accuracy of the trees are described 
in Table 11, where trees built using the Fayyad-
Irani discretization method of J48 are designated 
as “standard.” 

It is clear that the discretization technique has 
a significant impact of the size and accuracy of the 
decision trees. The experimental results shown 

in Table 8 suggest that an appropriate choice of β  
can reduce significantly the size and number of 
leaves of the decision trees, roughly maintaining 
the accuracy (measured by stratified five-fold cross 
validation) or even increasing the accuracy.

Our supervised discretization algorithm that 
discretizes each attribute B  based on the relation-
ship between the partition πB and πA  (where A is 
the attribute that specifies the class of the objects). 
Thus, the discretization process of an attribute is 
carried out independently of similar processes 
performed on other attributes. As a result, our 
algorithm is particularly efficient for naïve Bayes 
classifiers, which rely on the essential assumption 
of attribute independence. The error rates of naïve 
Bayes Classifiers obtained for different discretiza-
tion methods are shown in Table 12.

The use of the metric space of partitions of the 
data set in discretization is helpful in preparing 
the data for classifiers. With an appropriate choice 
of the parameter β that defines the metric used in 
discretization, standard classifiers such as C4.5 
or J48 generate smaller decision trees with com-
parable or better levels of accuracy when applied 
to data discretized with our technique.

conclusIon And future 
reseArch

The goal of this chapter is to stress the significance 
of using metric methods in typical data mining 
tasks. We introduced a family of metrics on the 
set of partitions of finite sets that is linked to the 
notion of generalized entropy and we demon-
strated its use in classification, clustering, feature 
extraction and discretization.

In the realm of classification these metrics 
are used for a new splitting criterion for building 
decision trees. In addition to being more intuitive 
than the classic approach, this criterion results in 
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Table 11. Comparative experimental results for decision trees

Database Experimental Results

Discretization
method

Size Number of
Leaves

Accuracy (strat.
cross-validation)

Heart-c Standard 51 30 79.20

β = 1.5 20 14 77.36

β = 1.8 28 18 77.36

β = 1.9 35 22 76.01

β = 2 54 32 76.01

Glass Standard 57 30 57.28

β = 1.5 32 24 71.02

β = 1.8 56 50 77.10

β = 1.9 64 58 67.57

β = 2 92 82 66.35

Ionosphere Standard 35 18 90.88

β = 1.5 15 8 95.44

β = 1.8 19 12 88.31

β = 1.9 15 10 90.02

β = 2 15 10 90.02

Iris Standard 9 5 95.33

β = 1.5 7 5 96

β = 1.8 7 5 96

β = 1.9 7 5 96

β = 2 7 5 96

Diabetes Standard 43 22 74.08

β = 1.8 5 3 75.78

β = 1.9 7 4 75.39

β = 2 14 10 76.30

Table 12. Error rate for naive Bayes classifiers

Discretization
method

Diabetes Glass Ionosphere Iris 

β = 1.5  34.9   25.2  4.8  2.7  

β = 1.8  24.2   22.4  8.3   4  

β = 1.9  24.9   23.4  8.5    4  

β = 2  25.4   24.3  9.1    4.7 

Weighted proportional  25.5   38.4  10.3    6.9 

Proportional      26.3   33.6  10.4    7.5 
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decision trees that have smaller sizes and fewer 
leaves than the trees built with standard methods, 
and have comparable or better accuracy. The 
value of β that results in the smallest trees seems 
to depend on the relative distribution of the class 
attribute and the values of the feature attributes 
of the objects. 

Since clusterings of objects can be regarded as 
partitions, metrics developed for partitions pres-
ent an interest for the study of the dynamics of 
clusters, as clusters are formed during incremental 
algorithms, or as data sets evolve.

As stated in Guyon and Elisseeff (2003), in 
early studies of relevance published in the late 
1990’s (Blum & Langley, 1997; Kohavi & John, 
1997), few applications explored data with more 
than 40 attributes. With the increased interest 
of data miners in bio-computing in general, and 
in microarray data in particular, classification 
problems that involve thousands of features and 
relatively few examples came to the fore. Applica-
tions of metric feature selection techniques should 
be useful to the analysis of this type of data.

An important open issue is determining 
characteristics of data sets that will inform the 
choice of an optimal value for the β parameter. 
Also, investigating metric discretization for data 
with missing values seems to present particular 
challenges that we intend to consider in our fu-
ture work.
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AbstrAct

Frequent itemset mining (FIM) is a key component of many algorithms that extract patterns from 
transactional databases. For example, FIM can be leveraged to produce association rules, clusters, 
classifiers or contrast sets. This capability provides a strategic resource for decision support, and 
is most commonly used for market basket analysis. One challenge for frequent itemset mining is the 
potentially huge number of extracted patterns, which can eclipse the original database in size. In addi-
tion to increasing the cost of mining, this makes it more difficult for users to find the valuable patterns. 
Introducing constraints to the mining process helps mitigate both issues. Decision makers can restrict 
discovered patterns according to specified rules. By applying these restrictions as early as possible, the 
cost of mining can be constrained. For example, users may be interested in purchases whose total price 
exceeds $100, or whose items cost between $50 and $100. In cases of extremely large data sets, pushing 
constraints sequentially is not enough and parallelization becomes a must. However, specific design is 
needed to achieve sizes never reported before in the literature. 
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IntroductIon 

Frequent pattern discovery has become a common 
topic of investigation in the data mining research 
area. Its main theme is to discover the sets of items 
that occur together more than a given threshold 
defined by the decision maker. A well-known 
application domain that counts on the frequent 
pattern discovery is the market basket analysis. In 
most cases when the support threshold is low and 
the number of frequent patterns “explodes”, the 
discovery of these patterns becomes problematic, 
not only because of the huge number of discovered 
rules, but also because of performance reasons 
such as: high memory dependencies, huge search 
space, and massive I/O operations. To reduce the 
effects of these problems new methods need to be 
investigated such as fast traversal techniques to 
reduce the search space or using constraints that 
lessen the output size whilst directly discover-
ing patterns that are of interest to the user either 
sequentially or in parallel. 

Constraint-based frequent pattern mining 
is an ongoing area of research. Two important 
categories of constraints are monotone and anti-
monotone (Lakshmanan, Ng, Han, & Pang, 1999). 
Anti-monotone constraints are constraints that 
when valid for a pattern, they are consequently 
valid for any subset subsumed by the pattern. 
Monotone constraints when valid for a pattern 
are inevitably valid for any superset subsuming 
that pattern. The straightforward way to deal with 
constraints is to use them as a postmining filter. 
However, it is more efficient to consider the con-
straints during the mining process. This is what 
is referred to as “pushing the constraints” (Pie & 
Han, 2000). Most existing algorithms leverage 
(or push) one of these types during mining and 
postpone the other to a postprocessing phase. 

New algorithms, such as Dualminer, apply 
both types of constraints at the same time (Bucila, 
Gehrke, Kifer, & White, 2002). It considers these 
two types of constraints in a double process, one 
mirroring the other for each type of constraint, 

hence its name. However, monotone and anti-
monotone constraints do not necessarily apply in 
duality. Especially when considering the mining 
process as a set of distinct phases, such as the 
building of structures to compress the data and 
the mining of these structures, the application 
of these constraints differ by type. Moreover, 
some constraints have different properties and 
should be considered separately. For instance, 
minimum support and maximum support are 
intricately tied to the mining process itself while 
constraints on item characteristics, such as price, 
are not. Algorithms such as BifoldLeap (El-Hajj 
& Zaïane, 2005) and DPC-COFI (El-Hajj & 
Zaïane, 2003) push both types of constraints at 
the same time. The first one uses a leap approach 
for finding the set of patterns, while the second 
employs a top-down approach. Those algorithms 
showed good performance results mainly when 
mining extremely large datasets. More details 
about those two algorithms are explained in the 
related work section. 

Problem statement 

The problem of mining association rules over mar-
ket basket analysis was introduced in (Agrawal, 
Imielinski, & Swami, 1993; Agrawal & Srikant, 
1994). The problem consists of finding associa-
tions between items or itemsets in transactional 
data. The data is typically retail sales in the form 
of customer transactions, but can be any data that 
can be modeled into transactions. 

Formally, the problem is stated as follows: Let Ι 
= {i1,i2, ...im} be a set of literals, called items. Each 
item is an object with some predefined attributes 
such as price, weight, and so forth, and m is con-
sidered the dimensionality of the problem. Let Ð 
be a set of transactions, where each transaction 
Ŧ is a set of items such that Ŧ ⊆ I. A transaction 
Ŧ is said to contain X, a set of items in I, if X ⊆ 
T. A constraint ζ is a predicate on itemset X that 
yields either true or false. An itemset X satisfies a 
constraint ζ if and only if ζ(X) is true. An itemset 
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X has a support s in the transaction set Ð if s% of 
the transactions in Ð contain X. Two particular 
constraints pertain to the support of an itemset, 
namely the minimum support constraint and the 
maximum support constraint. An itemset X is 
said to be infrequent if its support s is smaller 
than a given minimum support threshold σ; X is 
said to be too frequent if its support s is greater 
than a given maximum support Σ; and X is said 
to be large or frequent if its support s is greater 
or equal than σ and less or equal than Σ. 

chapter organization 

This chapter starts by defining the main two 
types of constraints in section 2. Related work is 
illustrated in section 3. Our leap frequent mining 
algorithm COFI-Leap is explained in Section 4. 
The constraint pushing is explained in section 
5. Section 6 presents HFP-Leap and the parallel 
version of the constraint frequent mining algo-
rithm. Performance evaluations are explained in 
sections 7 and 8. 

constrAInts 

It is known that algorithms for discovering associa-
tion rules generate an overwhelming number of 
those rules. While many new efficient algorithms 
were recently proposed to allow the mining of 

extremely large datasets, the problem due to the 
sheer number of rules discovered still remains. 
The set of discovered rules is often so large that it 
becomes useless. Different measures of interest-
ingness and filters have been proposed to reduce 
the discovered rules, but one of the most realistic 
ways to find only those interesting patterns is 
to express constraints on the rules we want to 
discover. However, filtering the rules post-min-
ing adds a significant overhead and misses the 
opportunity to reduce the search space using the 
constraints. Ideally, dealing with the constraints 
should be done as early as possible during the 
mining process. 

categories of constraints 

A number of types of constraints have been 
identified in the literature from Lakshmanan et 
al. (1999). In this work, we discuss two important 
categories of constraints – monotone and anti-
monotone. 

•	 Definition	1	(Anti-monotone constraints): 
A constraint ζ is anti-monotone if and only if 
an itemset X violates ζ, so does any superset 
of X. That is, if ζ holds for an itemset S then 
it holds for any subset of S.

	 		 	 	 	 ∀

MONOTONE ANTI-MONOTONE 

min(S) ≤ v min(S) ≥ v 

max(S) ≥ v max(S) ≤ v 

count(S) ≥ v count(S) ≤ v 

sum(S) ≥ v(∀a ∈ S, a ≥ 0) sum(S) ≤ v(∀a ∈ S, a ≥ 0) 

range(S) ≥ v range(S) ≤ v 

support(S) ≤ v support(S) ≥ v 

Table 1. Commonly used monotone and anti-monotone constraints 
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Many constraints fall within the anti-monotone 
category. The minimum support threshold is a 
typical anti-monotone constraint. As an example, 
sum(S) ≤ v(∀a ∈ S, a ≥ 0) is an anti-monotone 
constraint. Assume that items A, B, and C have 
prices $100, $150, and $200 respectively. Given 
the constraint ζ =(sum(S) ≤ $200), then since 
itemset AB, with a total price of $250, violates 
the ζ constraint, there is no need to test any of 
its supersets (e.g., ABC) as they also violate the 
ζ constraint. 

•	 Definition	 2	 (Monotone	 constraints):	A 
constraint ζ is monotone if and only if an 
itemset X holds for ζ, so does any superset 
of X. That is, if ζ is violated for an itemset 
S then it is violated for any subset of S.  
      
                 ∀

An example of a monotone constraint is sum(S) 
≥ v(∀a ∈ S, a ≥ 0). Using the same items A, B, 
and C as before, and with constraint ζ =( sum(S) 
≥ 500 ), then knowing that ABC violates the 
constraint ζ is sufficient to know that all subsets 
of ABC will violate ζ as well. 

Table 1 presents commonly used constraints 
that are either anti-monotone or monotone. From 
the definition of both types of constraints we can 
conclude that anti-monotone constraints can be 
pushed when the mining-algorithm uses the bot-
tom-up approach, as we can prune any candidate 
superset if its subset violates the constraint. Con-
versely, the monotone constraints can be pushed 
efficiently when we are using algorithms that 
follow the top-down approach as we can prune 
any subset of patterns from the answer set once 
we find that its superset violates the monotone 
constraint. 

As an example, assume we have a frequent 
pattern ABCDE where the prices of items A, 
B, C, D and E are $10, $20, $30, $40, and $50 
respectively. Figure 1 presents the lattice for all 
possible frequent patterns that can be generated 

from ABCDE along with their respective prices. 
From this figure we can see that we may need 
to generate and count five patterns of size 1, 
ten patterns of size 2, ten patterns of size 3, five 
patterns of size 4, and one pattern of size 5 for a 
total of 31 patterns. If the user wants to find all 
frequent itemsets that have prices ranging from 
more than $50 to less than $90, there are two 
alternatives: either use a bottom-up approach, 
pushing anti-monotone constraints and postpro-
cessing the monotone ones, or use a top-down 
approach, pushing the monotone constraints 
and postprocessing anti-monotone ones. Let us 
consider the anti-monotone constraint price of X 
is less than $90. We can find that at the second 
level DE violates the constraint and consequently 
ADE, BDE, CDE, ABDE, ACDE, BCDE, and 
ABCDE should not be generated and counted, 
which saves us from generating seven patterns. 
At level three we find that ACE, BCD and BCE 
also violate the constraint, which means we do 
not need to generate and count ABCD and ABCE. 
In total, pushing the anti-monotone constraint 
allowed nine patterns to be pruned. 

The second monotone constraint can be applied 
as a postprocessing step to remove any frequent 
patterns that violate it (i.e., price less than or 
equal to $50). Figure 1 illustrates this pruning. 
The other alternative is to consider the monotone 
constraints first starting from the long patterns. 
Once we find for example that AB has a price 
less than $50, we can directly omit single items 
A and B. The same applies to AC, AD and BC. 
As before, the anti-monotone constraint can be 
applied in a postprocessing step to remove gener-
ated patterns that violate it. 

 
bi-directional Pushing of 
constraints 

Pushing constraints early means considering 
constraints while mining for patterns rather than 
postponing the checking of constraints until after 
the mining process. Considering all constraints 
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Figure 1. Lattice for all possible itemsets from ABCDE with their respective prices. 

Figure 2.  Pruning of the lattice: CDE and AB violate anti-monotone and monotone constraints respectively. 
All of their subsets and supersets are pruned respectively. BDE and AC satisfy the anti-monotone and 
monotone constraints respectively. There is no need to check their subsets and supersets respectively.
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while mining is difficult given the intrinsic charac-
teristics of existing algorithms for mining frequent 
itemsets, either going over the lattice of candidate 
itemsets top-down or bottom-up. Most algorithms 
attempt to push either type of constraints during 
the mining process hoping to reduce the search 
space in one direction: from subsets to supersets 
or from supersets to subsets. Dualminer (Bucila 
et al., 2002) pushes both types of constraints but 
at the expense of efficiency. Focusing solely on 
reducing the search space by pruning the lattice 
of itemsets is not necessarily a winning strategy. 
While pushing constraints early seems concep-
tually beneficial, in practice the testing of the 
constraints can add significant overhead. If the 
constraints are not selective enough, checking the 
constraint predicates for each candidate can be 
onerous. It is thus important that we also reduce 
the checking frequency. While the primary benefit 
of early constraint checking is the elimination 
of candidates that cannot pass the constraint, it 
can also be used to identify candidates which are 
guaranteed to pass the constraint and therefore 
do not need to be rechecked. In summary, the 
goal of pushing constraints early is to reduce the 
itemset search space, eliminating unnecessary 
processing and memory consumption, while at 
the same time limiting the amount of constraint 
checking performed. Figure 2 presents an example 
of how much we can gain by early pushing both 
types of constraints. 

relAted Work 

Mining frequent patterns with constraints has 
been studied in Lakshmanan et al. (1999) where 
the concept of monotone, anti-monotone and 
succinct were introduced to prune the search 
space. Pei and Han (2000) and Pei, Han, and 
Lakshmanan (2001) have also generalized these 
two classes of constraints and introduced a new 
convertible constraint class. In their work they 
proposed a new algorithm called FICM, which is 

an FP-Growth based algorithm (Han, Pei, & Yin, 
2000). This algorithm generates most frequent pat-
terns before pruning them. Its main contribution 
is that it checks for monotone constraints early 
and once a frequent itemset is found to satisfy the 
monotone constraint, then all itemsets having this 
item as a prefix are sure to satisfy the constraint 
and consequently there is no need to apply further 
checks. Dualminer (Bucila et al., 2002) is the first 
algorithm to mine both types of constraints at the 
same time. Nonetheless, it suffers from many 
practical limitations and performance issues. 
First, it is built on the top of the MAFIA (Bucila 
et al., 2001) algorithm which produces the set of 
maximal patterns, and consequently all frequent 
patterns generated using this model do not have 
their support attached. Second, it assumes that the 
whole dataset can fit in main memory, which is not 
always the case. FP-Growth and our approach use 
a very condensed representation, namely FP-Tree, 
which uses significantly less memory (Han et al., 
2000). Third, their top-down computation exploit-
ing the monotone constraint often performs many 
useless tests for relatively large datasets, which 
raises doubts about the performance gained by 
pushing constraints in the Dualminer algorithm. 
In a recent study of parallelizing Dualminer (Ting, 
Bailey, & Ramamohanarao, 2004), the authors 
showed that by mining relatively small sparse 
datasets consisting of 10K transactions and 100K 
items, the sequential version of Dualminer took 
an excessive amount of time. Unfortunately, the 
original authors of Dualminer did not show any 
single experiment to depict the execution time of 
their algorithm but only the reduction in predicate 
executions (Bucila et al., 2002). A recent strat-
egy dealing with monotone and anti-monotone 
constraints suggests reducing the transactional 
database input via pre-processing by succes-
sively eliminating transactions that violate the 
constraints and then applying any frequent itemset 
mining algorithm on the reduced transaction set 
(Bonchi et al., 2004). The main drawback of this 
approach is that it is highly I/O bound due to the 



��  

Bi-Directional Constraint Pushing in Frequent Pattern Mining

iterative process needed in rewriting the reduced 
dataset to disk. This algorithm is also sensitive 
to the results of the initial monotone constraint 
checking which is applied to full transactions. In 
other words, if a whole transaction satisfies the 
monotone constraint, then no pruning is applied 
and consequently no gains are achieved even if 
parts of this transaction do not satisfy the same 
monotone constraint. To overcome some of the 
issues in Bonchi et al., (2004), the same approach 
has been tested against the FP-Growth approach 
in Bonchi et al., (2004) with new effective pruning 
heuristics. DPC-COFI (El-Hajj & Zaïane, 2003) 
pushes both types of constraints after building 
small COFI trees for each frequent pattern in the 
frequent 1-itemset. It uses a top-down approach 
for finding the frequent patterns that satisfy 
the constraints, where many pruning ideas are 
incorporated in this algorithm such as in some 
cases pruning the COFI trees themselves, if the 
algorithm detects early that all what will be gen-
erated from this COFI-tree violates one type of 
the constraints tested. BiFoldLeap (El-Hajj et al., 
2005) also uses the concept of COFI tree. However, 
it extends this concept by applying a fast traversal 
approach called leap. In this approach it generates 
the maximal patterns first. During the pattern gen-
eration each type of constraints is checked early 
trying to prune any pattern that does not satisfy 
the constraints. In addition to its strong pruning 
strategies, this algorithm also uses a new idea of 
reducing the constraint checking by detecting in 
advance if a group of patterns satisfies one type 
of constraint, consequently this group will not be 
tested against this type of constraint. 

leAP AlGorIthMs: cofI-leap, 
hfP-leap 

We start here by explaining our frequent pattern 
mining approach that is based on the leap idea. 
We have implemented this approach in two ways 
either by applying the COFI-Leap, or HFP-Leap 

(Zaïane & El-Hajj, 2005) that is, the headerless 
Frequent Pattern Leap. The sequential constraint 
frequent mining algorithm, BifoldLeap, discussed 
in this chapter, is based on the COFI-Leap al-
gorithm. The parallel BifoldLeap, discussed in 
the next section, is based on a parallel version 
of the HFP-Leap (El-Hajj & Zaïane, 2006). This 
is mainly due to the fact that we need to reduce 
the communication cost between processors. A 
detailed explanation for the COFI-Leap idea is 
outlined later in this section. 

Most existing algorithms traverse the itemset 
lattice top-down or bottom-up, and search using a 
depth first or breadth first strategy. In contrast, we 
propose a leap traversal strategy that finds a su-
perset of pertinent itemsets by “leaping” between 
promising nodes in the itemset lattice. In addi-
tion to finding these relevant candidate itemsets, 
sufficient information is gathered to produce the 
frequent itemset patterns, along with their sup-
ports. Here, we use leap traversal in conjunction 
with the complementary COFI idea by El-Hajj and 
Zaïane (2003), where the locally frequent itemsets 
of each frequent item are explored separately. This 
creates additional opportunities for pruning. What 
is the COFI idea and what is this set of pertinent 
itemsets with their additional information? This 
set of pertinent itemsets is the set of maximals. 
We will first present the COFI tree structure, and 
then we will introduce our algorithm COFI-Leap 
that mines for frequent itemsets using COFI trees 
and jumping in the pattern lattice. In the next 
section, this same algorithm will be enhanced 
with constraint checking to produce algorithms 
BifoldLeap. 

Important Patterns: closed and 
Maximal 

The set of all frequent itemsets is said to be 
redundant. Indeed, knowing a pattern X to be 
frequent, all its subsets are de-facto frequent. 
However, when knowing the frequency of this 
pattern X, nothing can be said about the exact 
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Algorithm 1. COFI-Leap: Leap-Traversal with COFI-tree 

Input: Ð (transactional database; σ (Support threshold).
output: Type patterns with their respective supports.
F1  ← Scan Ð to find the set of frequent 1-itemsets 
FPT ← Scan Ð to build the FP-tree using F1 
GlobalMaximals ←∅ 
for each item I in Header(FPT ) in increasing support do 
  LF  ← FindlocalF requentW ithRespect(I) 
  If Not ← (I ∪ LF ) ⊆ GlobalMaximals then
   ICT ← Build COFT-Tree for I
   FPB ← FindFrequentPathBases(ICT )
		 	 LocalMaximals	←	Frequent(FPB) 
   InFrequentFPB ← notF requent(FPB)
   for each pair (A, B) ∈ InFrequentFPB do
    Pattern ← A ∩ B 
    If Pattern is frequent and not ∅ then
     Add Pattern in LocalMaximals
    else
      Add Pattern in InFrequentFPB IF not ∅ 
    end If 
   end for 
   for each pattern P in LocalMaximals do 

    If P is not a subset of any M ∈ GlobalMaximals then 
     Add P in GlobalMaximals 
    end If 
   end for 
  end If 
end for 

Patterns ← GeneratePatterns(FPB, GlobalMaximals)
Output Patterns 

respective frequencies of its subsets, except that 
they are frequent and their count is greater or equal 
than the support of X. This leads to the notion of 
Maximal patterns created by Bayardo (1998). A 
pattern is said to be maximal if there is no other 
frequent pattern that subsumes it. 

In other words, maximals are a subset of 
frequent patterns from which we can straight-
forwardly derive all frequent patterns without 
their exact support, but lower bounds. Another 
particular set of frequent patterns is called the set 
of frequent closed itemsets (Pasquier, Bastide, 
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Taouil & Lakhal 1999). A frequent itemset X 
is closed if and only if there is no X’ such that 
X is a subset of X’ and X’ is contained in every 
transaction containing X. The difference with 
maximals is that with the closed itemsets and 
their support one can derive all frequent patterns 
with their exact support. The set of maximal fre-
quent itemsets is found, in general, to be orders 
of magnitude smaller in size than the set closed 
itemsets, and the set of closed itemsets is found, 
in general, to be orders of magnitude smaller in 
size than the set of all frequent itemsets (Bucila 
et al., 2002). 

The strategy of our algorithm COFI-Leap is 
to first find this small set of the maximal patterns 
and keep enough information in the process to 
then generate all frequent patterns with their 
exact counts. 

cofI-trees 

The COFI-tree idea was introduced in El-Hajj and 
Zaïane (2003) as a means to reduce the memory 
requirement and speed up the mining strategy of 
FP-growth (Han et al., 2000). Rather than recur-
sively building conditional trees from the FP-tree, 
the COFI strategy was to create COFI-trees for 
each frequent item and mine them separately. 
Conditional trees are FP-trees conditioned on the 
existence of a given frequent item. The FP-tree 
discussed in Han et al. (2000) is a compact prefix-
tree representation of the subtransactions in the 
input data. Here, subtransactions are the original 
transactions with infrequent items removed. The 
FP-tree contains a header and internode links, 
which facilitate downward traversal (forward in 
the itemset pattern) as well as lateral traversal 
(next node representing a specific item). 

Building COFI-trees based on the FP-tree. 
For each frequent item in the FP-tree, in order 
of increasing support, one COFI-tree is built 
(El-Hajj & Zaïane, 2003). This tree is based on 
subtransactions which contain the root item and 
are composed only of items locally frequent with 

the root item that have not already been used as 
root items in earlier COFI-trees. The COFI-tree 
is similar to the FP-tree, but includes extra links 
for upward traversal (earlier in the itemset pat-
tern), a new participation counter in each node, 
and a data structure to allow traversal of all 
leaves in the tree. This participation counter is 
used during the mining process to count up the 
participation of each node in the generation of a 
frequent pattern. 

cofI-leap 

COFI-Leap is different than the algorithm pre-
sented in El-Hajj and Zaïane (2003) in the sense 
that it generates maximal patterns, where a pattern 
is said to be maximal if there is no other frequent 
pattern that subsumes it. COFI-Leap rather than 
traversing the pattern lattice top-down it leaps 
from one node to the other in search of the sup-
port border where maximals sit. Once maximals 
are found, with the extra information collected, 
all other patterns can be generated with their 
respective support. 

Following is a brief summary of the COFI-
Leap algorithm. First, a frequent pattern FP-tree 
(Han et al., 2000) is created, using two scans of 
the database. Second, for each frequent item, a 
COFI-tree is created including all co-occurant 
frequent items to the right (i.e., in order of decreas-
ing support). Each COFI-tree is generated from 
the FP-tree without returning to the transactional 
database for scans. Unique subtransactions in the 
COFI-tree along with their count (called branch 
support) are obtained from the COFI-tree. These 
unique subtransactions are called frequent path 
bases (FPB). These can be obtained by traversing 
upward from each leaf node in the COFI-tree, 
updating the participation counter to avoid over-
counting nodes. Clearly, there is at most one FPB 
for each subtransaction in the COFI-tree. 

Frequent FPBs are declared candidate maxi-
mals. Infrequent FPBs are intersected iteratively, 
producing subsets that may be frequent. When 
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an intersection of infrequent FPBs results in a 
frequent itemset, that itemset is declared as a 
candidate maximal and is not subject to further 
intersections. When an intersection is infrequent, 
it participates in further intersections looking for 
maximals. This is indeed how the leaps in the 
lattice are done. The result of the intersection of 
FPBs indicates the next node to explore. How is 
the support of a pattern calculated? Given the set 
of frequent path bases along with their branch 
supports, it is possible to count the support of 
any itemset. This is done by finding all FPBs that 
are supersets of the target itemset and summing 
their branch supports. For example, if there are 
two FPBs, ABC and ABCD, each with branch 
support 1, ABC has support 2, and ABCD has 
support 1. 

Algorithm 1 shows the main steps of COFI-
Leap. Notice that COFI-trees are not generated 
systematically for all frequent 1-itemsets. There 
is no need to look for maximals locally with 
respect to an item I, if I and its locally frequent 
items are already subset of known global maxi-
mals. Finally, in the function GeneratePatterns, 
the set of candidate maximal patterns is used 
along with the frequent path bases to produce 
the set of all frequent itemsets that satisfy the 
constraints along with their supports. Maximal 
itemsets can be found by filtering the candidate 
maximals to remove subsets. Supports for the 
candidate maximal patterns were computed as 
part of the intersection process (to discover that 
they were frequent), and therefore do not need to 
be recomputed. Once the maximal itemsets have 
been found, then all frequent itemsets can be found 
by iterating over all subsets of the maximals, sup-
pressing duplicates resulting from overlap with 
other maximal patterns. Support counting for the 
frequent itemsets is done as for the FPBs, that is 
by summing the branch supports of all FPBs that 
are supersets of the pattern. 

cofI-leap WIth constrAInts, 
bifoldleap 

The algorithm COFI-Leap offers a number of 
opportunities to push the monotone and anti-
monotone predicates, P() and Q() respectively. 
We start this process by defining two terms which 
are head (H) and tail (T ) where H is a frequent 
path base or any subset generated from the in-
tersection of frequent path bases, and T is the 
itemset generated from intersecting all remaining 
frequent path bases not used in the intersection 
of H. The intersection of H and T, H ∩ T, is the 
smallest subset of H that may yet be considered. 
Thus Leap focuses on finding frequent H that 
can be declared as local maximals and candidate 
global maximals. BifoldLeap extends this idea 
to find local maximals that satisfy P(). We call 
these P-maximals. 

Although we further constrain the P-maximals 
to itemsets that satisfy Q(), not all subsets of 
these P-maximals are guaranteed to satisfy Q(). 
To find the itemsets that satisfy both constraints, 
the subsets of each P-maximal are generated in 
order from long patterns to short. When a subset is 
found to fail Q(), further subsets do not need to be 
generated for that itemset, as they are guaranteed 
to fail Q() also. 

There are three significant places where con-
straints can be pushed. These are:

a. While building the FP-tree
b. While building the COFI-trees
c. While intersecting the frequent path bases 

which is the main phase where both types 
of constraints are pushed at the same time 
(algorithm 2)

Constraint pushing opportunities during FP-tree 
construction. First, P() is applied to each 1-item-
set. Items, which fail this test, are not included 
in FP-tree construction. Second, we use the idea 
from FP-Bonsai (Bonchi et al., 2004) where 
subtransactions which do not satisfy Q() are not 
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used in the second phase of the FP-tree building 
process. The supports for the items within these 
transactions are decremented. This may result in 
some previously frequent items becoming infre-
quent. Such items will not be used to construct 
COFI-trees in the following phase. 

Constraint pushing opportunities during 
COFI-tree construction. Let X be the set of all 
items that will be used to build the COFI-tree, 
that is the items which satisfy P() individually 
but have not been used as the root of a previous 
COFI-tree. If X fails Q(), there is no need to build 
the COFI-tree, as no subset of X can satisfy Q(). 
Alternatively, if X satisfies P(), there is also no 
need to build the COFI-tree, as X is a candidate 
P-maximal. 

Constraint pushing opportunities during 
intersection of Frequent-Path-Bases. There are 
two high-level strategies for pushing constraints 
during the intersection phase. First, P() and Q() 
can be used to eliminate an itemset or remove the 
need to evaluate its intersections with additional 
frequent path bases. Second, P() and Q() can 
be applied to the “head intersect tail” (H ∩ T), 
which is the smallest subset of the current itemset 
that can be produced by further intersections. 
These strategies are detailed in the following 
four theorems. 

• Theorem 1: If an intersection of frequent 
path bases (H) fails Q(), it can be discarded, 

and there is no need to evaluate further 
intersections with H. 
° Proof: If an itemset fails Q(), all of 

its subsets are guaranteed to fail Q() 
based on the definition of monotone 
constraints. Further intersecting H 
will produce subsets, all of which are 
guaranteed to violate Q(). 

• Theorem 2: If an intersection of frequent 
path bases (H) passes P(), it is a candidate 
P-maximal, and there is no need to evaluate 
further intersections with H. 
° Proof: Further intersecting H will 

produce subsets of H. By definition, 
no P-maximal is subsumed by another 
itemset that also satisfies P(). There-
fore, none of these subsets of H are 
potential new P-maximals. 

• Theorem 3: If a node’s H ∩ T fails P(), the 
H node can be discarded, and there is no 
need to evaluate further intersections with 
H. 
° Proof: If an itemset fails P(), then all 

of its supersets will also violate P() 
from the definition of anti-monotone 
constraints. Since a node’s H ∩ T 
represents the subset of H that results 
From intersecting H with all remain-
ing frequent path bases, H and all 
combinations of intersections between 
H and remaining frequent path bases 

Figure 3. Pushing P() and Q(). 
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Algorithm 2. BifoldLeap: Pushing P() and Q() 

Input: Ð (transactional database); σ; Σ; P(); Q(). 
output: Frequent patterns satisfying P(), Q()
 
PF1 ← Scan Ð to find the set of frequent P1-itemsets 
FPT ← Scan D to build FP-tree using PF1 and Q() 
PGM(PGlobalMaximals) ←∅ 

for each item I in Header(FPT ) do 
 LF ← FindlocalFrequentWithRespect(I)
 If (Not Q(I ∪ LF )) then 
  break 
 end if 
 If (P (I ∪ LF )) then 
  Add (I ∪ LF ) to PGM and break 
 end if 
 If Not (I ∪ LF ) ⊆ PGM then
  ICT ← Build COFI-Tree for I 
  FPB ← FindFrequentPathBases(ICT ) 
  PLM(PLMaximals) ←{P (FPB) and frequent} 
  InFrequentFPB ← notFrequent(FPB)
  for each pair (A, B) ∈ InFrequentFPB do
   header ←A ∩ B 
   Add header in PLM and Break IF (P(header) AND is frequent and not ∅) 
   Delete header and break IF (Not Q(header)) 
   tail ← Intersection(FPBs not in header) 
   delete header and break IF (Not P(header ∩ tail)) 
   Do not check for Q() in any subset of header IF (Q(header ∩ tail))
  end for 
  for each pattern P in PLM do
   Add P in PGM IF ((P not subset of any M ∈ P GM)
  end for 
 end If 
end for 
PQ-Patterns ← GPatternsQ(FPB, PGM)
Output PQ-Patterns
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are supersets of H ∩ T and therefore 
guaranteed to fail P() also. 

• Theorem 4:If a node’s H ∩ T passes Q(), 
Q() is guaranteed to pass for any itemset 
resulting from the intersection of a subset 
of the frequent path bases used to generate 
H plus the remaining frequent path bases 
yet to be intersected with H. Q() does not 
need to be checked in these cases. 
° Proof: Q() is guaranteed to pass for 

all of these itemsets because they are 
generated from a subset of the intersec-
tions used to produce the H ∩ T and 
are therefore supersets of the H ∩ T . 

The following example, shown in Figure 3, illus-
trates how BifoldLeap works. An A-COFI-tree is 
made from five items, A, B, C, D, and E, with prices 
$60, $450, $200, $150, and $100 respectively. In 
our example, this COFI-tree generates 5 frequent 
path bases, ACDE, ABCDE, ABCD, ABCE, and 
ABDE, each with branch support one. The anti-
monotone predicate, P(), is Sum(prices) ≤$500, 
and the monotone predicate, Q(), is Sum(prices) 
≥ $100. Intersecting the first FPB with the second 
produces ACDE, which has a price of $510, and 
therefore violates P() and passes Q(). Next, we 
examine the H ∩ T , the intersection of this node 
with the remaining three FPBs, which yields A 
with price $60, passing P() and failing Q(). None 
of these constraint checks provide an opportunity 
for pruning, so we continue intersecting this item-
set with the remaining frequent path bases. The 
first intersection is with the third FPB, producing 
ACD with price $410, which satisfies both the 
anti-monotone and monotone constraints. The 
second intersection produces ACE, which also 
satisfies both constraints. The same thing occurs 
with the last intersection, which produces ADE. 
Going back to the second frequent path base, 
ABCDE, we find that the H ∩ T , AB, violates 
the anti-monotone constraint with price $510. 
Therefore, we do not need to consider ABCDE or 
any further intersections with it. The remaining 

nodes are eliminated in the same manner. In total, 
three candidate P-maximals were discovered. We 
can generate all of their subsets while testing only 
against Q(). Finally, the support for these gener-
ated subsets can be computed from the existing 
frequent path bases. 

PArAllel bifoldleap: 
buIldInG the structures In 
PArAllel And MInInG theM In 
PArAllel 

The parallel BifoldLeap is based on a parallel 
version of the HFP-Leap (El-Hajj et al., 2005). 
The HFP-Leap employs the same idea of COFI-
Leap, where both algorithms generate the FPBs 
before applying the leap approach to find the set 
frequent patterns. The main differences between 
them is that the COFI-Leap generates FPBs at the 
COFI-tree level, while the HFP-Leap generates 
the FPBs from a tree structure that is the same as 
the FP-tree except for the following differences. 
We call this tree Headerless-Frequent-Pattern-
Tree or HFP-tree. 

1. We do not maintain a header table, as a header 
table is used to facilitate the generation of 
the conditional trees in the FP-growth model 
(Han et al., 2000). It is not needed in our 
leap traversal approach.

2. We do not need to maintain the links between 
the same itemset across the different tree 
branches (horizontal links).

3. The links between nodes are bidirectional 
to allow top-down and bottom-up traversals 
of the tree. 

4. All leaf nodes are linked together as the leaf 
nodes are the start of any pattern base and 
linking them helps the discovery of frequent 
pattern bases. 

5. In addition to support, each node in the 
HFP-tree has a second variable called par-
ticipation. 
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From the generated FPBs the leap approach is 
applied to produce the set of maximal patterns. 
In the work presented in this chapter we extend 
this parallelization idea by pushing constraints in 
parallel using a novel algorithm we call parallel 
BifoldLeap. 

The parallel version of BifoldLeap favors us-
ing leap intersections on the HFP-Leap over the 
COFI-Leap approach. The reason for this is that 
during the parallelization of leap we mainly need 
to broadcast the results of each leap intersections 
at each node level, that is, broadcasting the lo-
cally generated maximals to produce the global 
maximals. In the case of COFI-Leap approach 
local maximals are generated per COFI tree that 
is, if we have n COFI-trees then n messages will 
be broadcast. However for HFP-Leap we apply 
one set of intersections per tree that is, per node. 
As a result of this, only one set of messages is 
needed to broadcast the set of local maximals 
among processors. 

The parallel BifoldLeap starts by partition-
ing the data among the parallel nodes, where 
each node receives almost the same number of 
transactions. Each processor scans its partition 
to find the frequency of candidate items. The 
list of all supports is reduced to the master node 
to get the global list of frequent 1-itemsets. The 
second scan of each partition starts with the goal 
of building a local headerless frequent patterns 
tree. From each tree, the local set of frequent path 
bases is generated. Those sets are broadcast to 
all processors. Identical frequent path bases are 
merged and sorted lexicographically, the same 
as with the sequential process. At this stage the 
pattern bases are split among the processors. 
Each processor is allocated a carefully selected 
set of frequent pattern bases to build their respec-
tive intersection trees, with the goal of creating 
similar depth trees among the processors. This 
distribution is discussed further below. Pruning 
algorithms are applied at each processor to reduce 
the size of the intersection trees as it is done 
in the sequential version (Zaïane et al., 2005). 

Maximal patterns that satisfy the P() constraints 
are generated at each node. Each processor then 
sends its P-maximal patterns to one master node, 
which filters them to generate the set of global 
P-maximal patterns and then find all their subsets 
that satisfy Q(). Algorithm 3 presents the steps 
needed to generate the set of patterns satisfying 
both P() and Q() in parallel. 

load sharing Among Processors 

While the trees of intersections are not physically 
built, they are virtually traversed to complete 
the relevant intersections of pattern bases. Since 
each processor can handle independently some 
of these trees and the sizes of these trees of in-
tersections are monotonically decreasing, it is 
important to cleverly distribute these among the 
processors to avoid significant load imbalance. A 
naïve and direct approach would be to divide the 
trees sequentially. Given p processors we would 
give the first (1/p)th trees to the first processor, 
the next fraction to the second processor, and so 
on. Unfortunately, this strategy eventually leads 
to imbalance among the processors since the 
last processor gets all the small trees and would 
undoubtedly terminate before the other nodes 
in the cluster. A more elegant and effective ap-
proach would be a round robin approach taking 
into account the sizes of the trees: when ordered 
by size, the first p trees are distributed one to 
each processor and so on for each set of p trees. 
This avoids having a processor dealing with only 
large trees while another processor is intersect-
ing with only small ones. Although this strategy 
may still create imbalance among processors, it 
will be less acute than the naïve direct approach. 
The strategy that we propose, and call first-last, 
distributes two trees per processor at a time. The 
largest tree and the smallest tree are assigned to 
the first processor, then the second largest tree 
and penultimate small tree to the second proces-
sor, the third largest tree and third smallest tree 
to the third processor and so on in a loop. This 
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Algorithm 3. Parallel-BifoldLeap: Parallel-BifoldLeap with headerless FP-tree 

Input: Ð (transactional database); P(); Q(); and σ (Support threshold). 
output: Patterns satisfying both P() and Q() with their respective supports. 

- Ð is already distributed otherwise partition Ð between the available p processors; 
- Each processor p scans its local partition Ðp to find the set of local candidate 
�-itemsets LpC1 with their respective local support; 
- The supports of all LiC1 are transmitted to the master processor; 
- Global Support is counted by master and F� is generated; 
- F1 is broadcasted to all nodes; 
- Each processor p scans its local partition Ðp to build the local Headerless FP-tree LpHFP based on F1; 
- LpFPB ← FindFrequentPatternBases(LpHFP );
-All LpFPB are sent to the master node; 
-Master node generates the global FPB from all LpFPB; 
-The global FPB are broadcast to all nodes; 
-Each Processor p is assigned a set of local header nodes LHD from the global FPB; {this is the distribution of 
trees of intersections} 

 for each i in LHD do
	 	 LOCAL−P−Maximals ← Find-P-Maximals(FPB,	σ,	P(),Q());
 end for 
- Send all LOCAL−	P	−Maximals to the master node; 
- The master node prunes all LOCAL−P−Maximals that have supersets itemsets in LOCAL−P	−Maximals to 
produce GLOBAL−	P−Maximals; 
- The master node generates frequent patterns satisfying both P() and Q() from GLOBAL−P−Maximals. 

approach seems to advocate a better load balance 
as is demonstrated by our experiments. 

Parallel leap traversal Approach : 
An example 

The following example illustrates how the Bi-
foldLeap approach is applied in parallel. Figure 
4 (A) presents 7 transactions made of 8 distinct 
items which are: A, B, C, D, E, F, G, and H with 
prices $10, $20, $30, $40, $50, $60, and $70 

respectively. Assuming we want to mine those 
transactions with a support threshold equals to 
at least 3 and generates patterns that their total 
prices are between $30 and $100 (i.e., P() : Sum of 
Prices < $100, and Q()Sum of Prices > $30, using 
two processors. Figures 4 (A) and Figure 4 (B) 
illustrate all the needed steps to accomplish this 
task. The database is partitioned between the two 
processors where the first three transactions are 
assigned to the first processor, P1, and the remain-
ing ones are assigned to the second processor, P2 
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(Figure 4 (A)). In the first scan of the database, 
each processor finds the local support for each 
item: P1 finds the support of A, B, C, D, E, F and 
G which are 3, 2, 2, 2, 2, 1 and 2 respectively, 
and P 2 the supports of A, B, C, D, E, F, and H 
which are 2, 3, 3, 3, 3, 3, 2. A reduced operation 
is executed to find that the global support of A, 
B, C, D, E, F, G, and H items is 5, 5, 5, 5, 5, 4, 2, 
and 2. The last two items are pruned as they do 
not meet the threshold criteria (support > 2), and 
the remaining ones are declared frequent items 
of size 1. The set of Global frequent 1-itemset is 
broadcast to all processors using the first round 
of messages. 

The second scan of the database starts by build-
ing the local headerless tree for each processor. 
From each tree the local frequent path bases are 
generated. In P1 the frequent-path-bases ABCDE, 
ABE, and ACDF with branch support equal to 
1 are generated. P2 generates ACDEF, BCDF, 
BEF, and ABCDE with branch supports equal to 
1 for all of them (Figure 4 (B)). The second set of 
messages is executed to send the locally generated 
frequent path bases to P1. Here, identical ones are 
merged and the final global set of frequent path 
bases are broadcast to all processors with their 
branch support. (Figure 4 (C)).

Each processor is assigned a set of header nodes 
to build their intersection tree as in Figure 4.D. 
In our example, the first, third, and sixth frequent 
path bases are assigned to P1 as header nodes for 
its intersection trees. P2 is assigned to the second, 
fourth, and fifth frequent path bases. The first 
tree of intersection in P1 produces 3 P-maximals 
(i.e., with total prices is less than $100) BCD: $90, 
ABE: $80, and ACD: $80 with support equal to 
3, 3, and 4 respectively. The second assigned tree 
does not produce any P-maximals. P1 produces 3 
local P-maximals which are BCD: $90, ABE: $80, 
and ACD: $80. P2 produced BE: $70, and AE: $60 
with support equal to 4 and 4 respectively. All 
local P-maximals are sent to P1 in which any local 
P-maximal that has any other superset of local 
P-maximals from other processors are removed. 

The remaining patterns are declared as global 
P-maximals (Figure 4 (E)). Subsets of the Global 
P-maximals that satisfy Q() which is prices > 30 
are kept and others are pruned. The final results 
set produces D: $40, E: $50, AC: $40, AD: $50, 
BC: $50, BD: $60, CD: $70, BE: $70, AE: $60, 
BCD: $90, ABE: $80, and ACD: $80

sequentIAl PerforMAnce 
evAluAtIon 

To evaluate our BifoldLeap algorithm, we con-
ducted a set of experiments to test the effect of 
pushing monotone and anti-monotone constraints 
separately, and then both in combination for the 
same datasets. To quantify scalability, we experi-
mented with datasets of varying size. We also 
measured the impact of pushing vs. postprocessing 
constraints on the number of evaluations of P() 
and Q(). Like in Bucila et al. (2002), we assigned 
prices to items using both uniform and zipf distri-
butions. Our constraints consisted of conjunctions 
of tests for aggregate, minimum, and maximum 
price in relation to specific thresholds. 

We received an FP-Bonsai code (base on 
FP-Growth) from its original authors Bonchi et 
al. (2004). Unfortunately, not all pruning and 
clever constraint considerations suggested in 
their FP-Bonsai paper were implemented in this 
code. Moreover, the implementation as received 
produced some false positives and false nega-
tives. This is why we opted not to add it to our 
comparison study. Although, with simple and only 
monotone constraints, the received FP-Bonsai 
implementation was indeed fast. FP-Bonsai as 
described in the paper has merit, but because of 
lack of time we could not implement it ourselves 
(albeit adding implementation bias) or fix the 
received code. 

We compared our algorithm with Dualminer 
(Bucila et al., 2002). Based on its authors’ recom-
mendations, we built the Dualminer framework 
on top of the MAFIA (Bucila et al., 2001) imple-
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mentation provided by its original authors. Our 
experiments were conducted on a 3GHz Intel 
P4 with 2 GB of memory running Linux 2.4.25, 
Red Hat Linux release 9. The times reported also 
include the time to output all matching itemsets. 
We have tested these algorithms using both real 
datasets provided by FIMI (2003) and synthetic 
datasets generated using Q. synthetic data genera-
tion code (2000); we used “retail” as our primary 

real dataset reported here. A dataset with the same 
characteristics as the one reported in Bucila et al. 
(2002) was also generated. We also report some 
results with our DPC-COFI to illustrate the ad-
vantages of the Leap approach (BifoldLeap). 

Figure 4. Example of parallel bifoldLeap: Finding the FPB, intersecting FPB 
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Figure 5. Pushing P(), Q(), and P() ∩ Q()

Figure 6. Pushing more selective P(), Q(), and P() ∩ Q()

Figure 7. Pushing extremely selective P(), Q(), and P() � Q()
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Impact of P() and Q() selectivity on 
bifoldleap and dualminer 

To differentiate between our DPC-COFI, Bifold-
Leap algorithms and Dualminer, we experimented 
against the retail dataset. In the first experiment 
(Figure 5), we pushed P(), then Q(), and finally 
P() & Q(). We used the zipf distribution to assign 
prices to items. Both P() and Q() consisted of con-
straints on the sum of the prices. The constraint 
thresholds were chosen to not be very selective. 
Figure 6 presents the same experiment with more 
selective constraints. 

Figure 7 presents pushing extremely selective 
constraints, using anti-monotone and monotone 
constraints on the sum of the prices, and on 
the minimum and maximum item price. In this 
experiment, we found that both DPC-COFI and 
BifoldLeap in most cases outperform Dualminer 
and in some cases by more than one order of 
magnitude, where DPC-COFI was always the 
runner up. The most interesting observation we 
found from this experiment was that if we push 
one type of constraint, for example, P(), that takes 
T 1 seconds and the other type of constraint, Q(), 
takes T 2 seconds where T 1 ≤ T 2, in Dualminer 
pushing both constraints together will take T 3 
seconds, where T 3 is always between T 1 and T 
2. In contrast, COFI approaches always take less 
time with the conjunction of the constraints than 
with either constraint in isolation. Monotone and 

anti-monotone constraints can indeed be mutually 
assisting each other in the selectivity. DPC-COFI 
and BifoldLeap took better advantage of this 
reciprocal assistance in the pruning. 

scalability tests 

Scalability is an important issue for frequent 
itemset mining algorithms. Synthetic datasets 
were generated with 50K, 100K, 250K, and 500K 
transactions, with 5K or 10K distinct items. In this 
experiment, BifoldLeap demonstrated extremely 
good scalability vs. increasing dataset size. In 
contrast, Dualminer reached a point where it 
consumed almost three orders of magnitude more 
time than that needed by BifoldLeap. Figure 8 
(A) depicts one of these results while mining 
datasets with only 5K unique items. As another 
experiment example, we tested both algorithms 
on datasets with up to 50 million transactions and 
100K items. Dualminer finished the 1M dataset in 
8534 seconds while BifoldLeap finished in 186s, 
190s, 987s and 2034s for the 1M, 5M, 25M and 
50M transactions datasets respectively. 

constraint checking: Pushing 
constraints vs. Postprocessing 

One of the major challenging issues for constraint 
mining is reducing the number of evaluations 
of P() and Q(). In the following experiment, 

Figure 8. (A) Scalability test; (B) Effect of changing the price distribution 
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we generated a synthetic dataset with the same 
characteristics as the one reported in Bucila et al., 
(2002). Specifically, it was generated with 10,000 
transactions, an average transaction length of 15, 
an average maximal pattern length of 10, 1000 
unique items, and 10,000 patterns. We found 
that Dualminer was indeed good on this dataset 
as reported in Bucila et al. (2002). However, Bi-
FoldLeap outperformed it with the same order 
of magnitude as the tests on timing. This shows 
that the predicate checking is indeed a significant 
overhead and BiFoldLeap outperforms Dualminer 
in time primarily because it does significantly less 
predicate checks. 
 The goal of these experiments was to test the 
number of evaluations and the effect of pushing 
constraints early vs. postprocessing them. We ran 
our experiments using this dataset with absolute 
support equal to 25, 50, and 75 using the two dif-
ferent distributions. We used a modified version of 
MAFIA with postprocessing as the postprocessing 
counterpart to Dualminer. Our implementation 

of Dualminer always tests minimum support and 
P() together, while BifoldLeap’s minimum support 
checks occur at different times and do not contrib-
ute to the count for P(). Figure 9 depicts the results 
of these experiments. Our first observation is that 
Dualminer performs a huge number of constraint 
evaluations as compared to BifoldLeap. Even 
in cases where we only generated 255 patterns, 
Dualminer needed more than 50,000 evaluations 
for both P() and Q(), compared to almost 6,000 
needed by BifoldLeap. Our second observation is 
that MAFIA with postprocessing requires fewer 
constraint evaluations than Dualminer. 

different distributions 

All of our experiments were conducted using 
uniform and/or zipf price distributions. In most 
of the experiments, we found that the effect of 
changing the distribution on Dualminer was 
greater than for BifoldLeap. This can be justified 
by the effectiveness of the pruning techniques 
used by BifoldLeap that also reduce the number 

Figure 9. No. of P() and Q() evaluations, using constraint pushing vs. postprocessing 
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of candidate checks which consequently affected 
its performance. Figure 8B depicts one of these 
results for the retail dataset. 

PArAllel PerforMAnce 
evAluAtIons 

To evaluate our parallel BifoldLeap approach, 
we conducted a set of different experiments to 
test the effect of pushing monotone Q() and anti-
monotone P() constraints separately, and then 
both in combination for the same datasets. These 
experiments were conducted using a cluster made 
of 20 boxes. Each box has Linux 2.4.18, dual pro-
cessor 1.533 GHz AMD Athlon MP 1800+, and 
1.5 GB of RAM. Nodes are connected by Fast 
Ethernet and Myrinet 2000 networks. In this set 
of experiments, we generated synthetic datasets 
using Q. synthetic data generation code (2000). 
All transactions are made of 100,000 distinct 
items with an average transaction length of 12 
items per transaction. The size of the transactional 
databases used varies from 100 million transac-
tions to 1 billion transactions. 

With our best efforts and literature searches, 
we were unable to find a parallel frequent mining 
algorithm that could mine more than 10 million 

transactions, which is far less than our target size 
environment. Due to this large discrepancy in 
transaction capacity, we could not compare our 
algorithm against any other existing algorithms, 
as none of them could mine and reach our target 
data size. 

We conducted a battery of tests to evaluate 
the processing load distribution strategy, the 
scalability vis-à-vis the size of the data to mine, 
and the speed-up gained from adding more par-
allel processing power. Some of the results are 
portrayed hereafter. 

effect of load distribution strategy 

We enumerated three possible strategies for tree 
of intersection distribution among the processors. 
As explained, the trees are in decreasing order of 
size and they can either be distributed arbitrarily 
using the naïve approach, or more evenly using 
a round robin approach, or finally with the first-
last approach. 

The naïve and simple strategy uses a direct 
and straightforward distribution. For example if 
we have six trees to assign to three processors, 
the first two trees are assigned to the first pro-
cessor, the third and fourth trees are assigned to 
the second processor, and the last two trees are 

Figure 10. 
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assigned to the last processor. Knowing that the 
last trees are smaller in size than the first trees, 
the third processor will inevitably finish before 
the first processor. In the round robin distribu-
tion, the first, second and third tree are allocated 
respectively to the first, second and third processor 
and then the remaining fourth, fifth and sixth trees 
are assigned respectively to processor one, two 
and three. With the last strategy of distribution, 
first-last, the trees are assigned in pairs: processor 
one works on the first and last tree, processor two 
receives the second and fifth tree, while the third 
processor obtains the third and fourth trees. 

From our experiments in Figure 10 (B) we 
can see that the first-last distribution gave the 
best results. This can be justified by the fact that 
since trees are lexicographically ordered then in 
general trees on the left are larger than those on 
the right. By applying the first-last distributions 
we always try to assign largest and smallest tree 
to the same node. All our remaining experiments 
use the first-last distribution methods among 
intersected trees. 

scalability with respect to 
database size 

One of the main goals in this work is to mine 
extremely large datasets. In this set of experi-

ments we tested the effect of mining different 
databases made of different transactional da-
tabases varying from 100 million transactions 
up to 1 billion transactions while pushing both 
type of constraints P() and Q(). To the best of 
our knowledge, experiments with such big sizes 
have never been reported in the literature. We 
mined those datasets using 32 processors, with 
3 different support thresholds: 10%, 5% and 1%. 
We were able to mine 1 billion transactions in 
3,700 seconds for a support of 0.1, up to 4300 
seconds for a support of 0.01. Figure 10 (A) shows 
the results of this set of experiments. While the 
curve does not illustrate a perfect linearity in the 
scalability, the execution time for the colossal 1 
billion transaction dataset was a very reasonable 
1 hour and 40 minutes with a 0.01 support and 32 
relatively inexpensive processors. 

scalability with respect to number 
of Processors 

To test the speed-up of our algorithm with the 
increase of processors, we fixed the size of the 
database at 100 million transactions and exam-
ined the execution time on this dataset with one 
to 32 processors. The execution time is reduced 
sharply when two to four parallel processors are 
added, and continues to decrease significantly 

Figure 11. 
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with additional processors (Figure 11 (A)). The 
speedup was significant: with 4 processors the 
speed doubled, with 8 processors it increased 
four-fold, and with 32 processors we achieved a 
thirteen-fold increase in speed. These results are 
depicted in Figure 11(B). 

conclusIon

Since the introduction of association rules a decade 
ago and the launch of the research in efficient fre-
quent itemset mining, the development of effective 
approaches for mining large transactional data-
bases has been the focus of many research studies. 
Furthermore, it is widely recognized that mining 
for frequent items or association rules, regardless 
of its efficiency, usually yields an overwhelming, 
crushing number of patterns. This is one of the 
reasons it is argued that the integration of data 
mining and database management technologies 
is required Chaudhuri (1998). These large sets of 
discovered patterns could be queried. Expressing 
constraints using a query language could indeed 
help sift through the large pattern set to identify 
the useful ones. 

We argue that pushing the consideration of 
these constraints at the mining process before 
discovering the patterns is an efficient and ef-
fective way to solve the problem. This does 
not exclude the integration of data mining and 
database systems, but suggests the need for data 
mining query languages intricately integrated 
with the data mining process. 

In this chapter we address the issue of early 
consideration of monotone and anti-monotone 
constraints in the case of frequent itemset mining. 
We propose a leap traversal approach, BifoldLeap 
that traverses the search space by jumping from 
relevant node to relevant node and simultaneously 
checking for constraint violations. The approach 
we propose uses existing data structures, FP-
tree and COFI-tree, but introduces new pruning 
techniques to reduce the search costs. We con-

ducted a battery of experiments to evaluate our 
constraint-based search and report a fraction of 
them herein for lack of space. The experiments 
show the advantages of pushing both monotone 
and anti-monotone constraints as early as possible 
in the mining process despite the overhead of 
constraint checking. We also compared our algo-
rithm to Dualminer, a state-of-the-art algorithm 
in constraint-based frequent itemset mining, and 
showed how our algorithm outperforms it and 
can find all frequent itemsets, the closed and the 
maximal patterns that satisfy constraints along 
with their exact supports. 

Parallelizing the search for frequent patterns 
plays an important role in opening the doors to the 
mining of extremely large datasets. Not all good 
sequential algorithms can be effectively parallel-
ized and parallelization alone is not enough. An 
algorithm has to be well suited for parallelization, 
and in the case of frequent pattern mining, clever 
methods for searching are certainly an advantage. 
The algorithm we propose for parallel mining of 
frequent patterns while pushing constraints is 
based on a new technique for astutely jumping 
within the search space, and more importantly, 
is composed of autonomous task segments that 
can be performed separately and thus minimize 
communication between processors. 

Our proposal is based on the finding of 
particular patterns, called pattern bases, from 
which selective jumps in the search space can 
be performed in parallel and independently from 
each other pattern base in the pursuit of frequent 
patterns that satisfy user’s constraints. The suc-
cess of this approach is attributed to the fact 
that pattern base intersection is independent and 
each intersection tree can be assigned to a given 
processor. The decrease in the size of intersection 
trees allows a fair strategy for distributing work 
among processors and in the course reducing 
most of the load balancing issues. While other 
published works claim results with millions of 
transactions, our approach allows the mining 
in reasonable time of databases in the order of 
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billion transactions using relatively inexpensive 
clusters; 16 dual-processor boxes in our case. This 
is mainly credited to the low communication cost 
of our approach. 
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AbstrAct

This chapter presents a framework for mining highly correlated association patterns named hyperclique 
patterns. In this framework, an objective measure called h-confidence is applied to discover hyperclique 
patterns. We prove that the items in a hyperclique pattern have a guaranteed level of global pairwise 
similarity to one another. Also, we show that the h-confidence measure satisfies a cross-support property, 
which can help efficiently eliminate spurious patterns involving items with substantially different support 
levels. In addition, an algorithm called hyperclique miner is proposed to exploit both cross-support and 
anti-monotone properties of the h-confidence measure for the efficient discovery of hyperclique patterns. 
Finally, we demonstrate that hyperclique patterns can be useful for a variety of applications such as 
item clustering and finding protein functional modules from protein complexes.
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IntroductIon

Many data sets have inherently skewed sup-
port distributions. For example, the frequency 
distribution of English words appearing in text 
documents is highly skewed—while a few of the 
words may appear many times, most of the words 
appear only a few times. Such a distribution has 
also been observed in other application domains, 
including retail data, Web click-streams, and 
telecommunication data.
 This chapter examines the problem of mining 
association patterns (Agrawal, Imielinski & Swa-
mi, 1993) from data sets with skewed support 
distributions. Most of the algorithms developed so 
far rely on the support-based pruning strategy to 
prune the combinatorial search space. However, 
this strategy is not effective for data sets with 
skewed support distributions due to the following 
reasons.

• If the minimum support threshold is low, 
we may extract too many spurious patterns 
involving items with substantially different 
support levels. We call such patterns as 
weakly-related cross-support patterns. 
For example, {Caviar, Milk} is a possible 

weakly related cross-support pattern since 
the support for an expensive item such as 
caviar is expected to be much lower than 
the support for an inexpensive item such 
as milk. Such patterns are spurious because 
they tend to be poorly correlated. Using a low 
minimum support threshold also increases 
the computational and memory require-
ments of current state-of-the-art algorithms 
considerably.

• If the minimum support threshold is high, 
we may miss many interesting patterns 
occurring at low levels of support (Hastie, 
Tibshirani & Friedman, 2001). Examples 
of such patterns are associations among 
rare but expensive items such as caviar and 
vodka, gold necklaces and earrings, or TVs 
and DVD players.

As an illustration, consider the pumsb census 
data set,1 which is often used as a benchmark data 
set for evaluating the computational performance 
of association rule mining algorithms. Figure 1 
shows the skewed nature of the support distribu-
tion. Note that 81.5% of the items have support 
less than 0.01 while only 0.95% of them having 
support greater than 0.9.

Figure 1. The support distribution of pumsb
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Table 1 shows a partitioning of these items 
into five disjoint groups based on their support 
levels. The first group, S1, has the lowest support 
level (less than or equal to 0.01) but contains the 
most number of items (i.e., 1735 items). In order 
to detect patterns involving items from S1, we 
need to set the minimum support threshold to 
be less than 0.01. However, such a low support 
threshold will degrade the performance of existing 
algorithms considerably. For example, our experi-
ments showed that, when applied to the pumsb 
data set at support threshold less than 0.4,2 state-
of-the-art algorithms such as Apriori (Agrawal & 
Srikant, 1994) and Charm (Zaki & Hsiao, 2002) 
break down due to excessive memory require-
ments. Even if a machine with unlimited memory 
is provided, such algorithms can still produce a 
large number of weakly related cross-support 
patterns when the support threshold is low. Just 
to give an indication of the scale, out of the 18847 
frequent pairs involving items from S1 and S5 at 
support level 0.0005, about 93% of them are cross-
support patterns, that is, containing items from 
both S1 and S5. The pair wise correlations within 
these cross-support patterns are extremely poor 
because the presence of the item from S5 does not 
necessarily imply the presence of the item from S1. 
Indeed, the maximum correlation obtained from 
these cross-support patterns is only 0.029377. In 
contrast, item pairs from S1 alone or S5 alone have 
correlation as high as 1.0. The above discussion 
suggests that it will be advantageous to develop 
techniques that can automatically eliminate such 
patterns during the mining process.

Indeed, the motivation for this work is to strike 
a balance between the ability to detect patterns at 

very low support levels and the ability to remove 
spurious associations among items with substan-
tially different support levels. A naive approach 
for doing this is to apply a very low minimum 
support threshold during the association mining 
step, followed by a post-processing step to elimi-
nate spurious patterns. This approach may fail 
due to the following reasons: (1) the computation 
cost can be very high due to the large number of 
patterns that need to be generated; (2) current 
algorithms may break down at very low support 
thresholds due to excessive memory require-
ments. Although there have been recent attempts 
to efficiently extract interesting patterns without 
using support thresholds, they do not guarantee 
the completeness of the discovered patterns. 
These methods include sampling (Cohen, Datar, 
Fujiwara, Gionis, Indyk, & Motwani, 2000) and 
other approximation schemes (Yang, Fayyad, & 
Bradley, 2001).

A better approach will be to have a measure 
that can efficiently identify useful patterns even 
at low levels of support and can be used to au-
tomatically remove spurious patterns during the 
association mining process. Omiecinski (2003) 
recently introduced a measure called all-confi-
dence as an alternative to the support measure. 
The all-confidence measure is computed by taking 
the minimum confidence of all association rules 
generated from a given item set. Omiecinski 
proved that all-confidence has the desirable anti-
monotone property and incorporated this property 
directly into the mining process for efficient com-
putation of all patterns with sufficiently high value 
of all-confidence. Note that we had independently 
proposed a measure called h-confidence (Xiong, 

Group S1 S2 S3 S4 S5

Support 0-0.01 0.01-0.05 0.05-0.4 0.4-0.9 0.9-1.0

# Items 1735 206 101 51 20

Table 1. Groups of items for pumsb data set
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Tan, & Kumar, 2003a) and had named the item 
sets discovered by the h-confidence measure as 
hyperclique patterns. As shown in the next section, 
h-confidence and all-confidence measures are 
equivalent. To maintain consistent notation and 
presentation, we will use the term h-confidence 
in the remainder of this chapter.

In this chapter, we extend our work (Xiong, 
Tan, & Kumar, 2003b) on hyperclique pattern 
discovery and makes the following contribu-
tions. First, we formally define the concept of 
the cross-support property, which helps ef-
ficiently eliminate spurious patterns involving 
items with substantially different support levels. 
We show that this property is not limited to h-
confidence and can be generalized to some other 
association measures. Second, we prove that if a 
hyperclique pattern has an h-confidence value 
above the minimum h-confidence threshold, hc, 
then every pair of objects within the hyperclique 
pattern must have a cosine similarity (uncentered 
Pearson’s correlation coefficient3) greater than or 
equal to hc. Also, we show that all derived size-2 
hyperclique patterns guarantee to be positively 
correlated, as long as the minimum h-confidence 
threshold is above the maximum support of all 
items in the given data set. Moreover, we refine 
our algorithm (called hyperclique miner) that is 
used to discover hyperclique patterns. Our ex-
perimental results show that hyperclique miner 
can efficiently identify hyperclique patterns, 
even at low support levels. We also demonstrate 
that the utilization of the cross-support property 
provides significant additional pruning over that 
provided by the anti-monotone property of the 
h-confidence measure.

 Finally, hyperclique patterns are valuable pat-
terns in their own right because they correspond 
to item sets involving only tightly coupled items. 
Discovering such patterns can be potentially 
useful for a variety of applications such as item 
clustering and Bioinformatics. Indeed, we first 
demonstrate the application of hyperclique pat-
terns in the area of item clustering, where such 

patterns can be used to provide high-quality 
hyperedges to seed the hypergraph-based cluster-
ing algorithms (Han, Karypis, & Kumar, 1998). 
In addition, we present an application of hyper-
clique patterns for identifying protein functional 
modules from protein complexes.

related Work

Recently, there has been growing interest in devel-
oping techniques for mining association patterns 
without support constraints. For example, Wang, 
He, Cheung, and Chin, (2001) proposed the use 
of universal-existential upward closure property 
of confidence to extract association rules without 
specifying the support threshold. However, this 
approach does not explicitly eliminate cross-sup-
port patterns. Cohen et al. (2000) have proposed 
using the Jaccard similarity measure:

( ) ( ),
( )

P x ysim x y
P x y

=




to capture interesting patterns without using a 
minimum support threshold. As we show later, the 
Jaccard measure has the cross-support property, 
which can be used to eliminate cross-support 
patterns. However, the discussion in Cohen et 
al. (2000) focused on how to employ a combina-
tion of random sampling and hashing techniques 
for efficiently finding highly correlated pairs of 
items.

Many alternative techniques have also been 
developed to push various types of constraints 
into the mining algorithm (Bayardo, Agrawal, 
& Gunopulous, 1999; Grahne, Lakshmanan 
& Wang, 2000; Liu, Hsu, & Ma, 1999). Although 
these approaches may greatly reduce the number 
of patterns generated and improve computational 
performance by introducing additional con-
straints, they do not offer any specific mechanism 
to eliminate weakly related patterns involving 
items with different support levels.

Besides all-confidence (Omiecinski, 2003), 
other measures of association have been proposed 
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to extract interesting patterns in large data sets. 
For example, Brin, Motwani, and Silverstein 
(1997) introduced the interest measure and χ2 test 
to discover patterns containing highly dependent 
items. However, these measures do not possess 
the desired anti-monotone property.

The concept of closed item sets (Pei, Han, & 
Mao, 2000; Zaki & Hsiao, 2002) and maximal 
item sets (Bayardo, 1998; Burdick, Calimlim, 
& Gehrke, 2001) have been developed to provide 
a compact presentation of frequent patterns and of 
the “boundary” patterns, respectively. Algorithms 
for computing closed item sets and maximal item 
sets are often much more efficient than those for 
computing frequent patterns, especially for dense 
data sets, and thus may be able to work with 
lower support thresholds. Hence, it may appear 
that one could discover closed or maximal item 
sets at low levels of support, and then perform 
a postprocessing step to eliminate cross-support 
patterns represented by these concepts. However, 
as shown by our experiments, for data sets with 
highly skewed support distributions, the number 
of spurious patterns represented by maximal or 
closed item sets is still very large. This makes the 
computation cost of postprocessing very high.

hyPerclIque PAttern

In this section, we present a formal definition of 
hyperclique patterns and show the equivalence 
between all-confidence (Omiecinski, 2003) and 
h-confidence. In addition, we introduce the anti-
monotone property of the h-confidence measure. 
More properties will be discussed in the next 
section. These properties are useful for efficient 
computation and interpretation of hyperclique 
patterns. 

hyperclique Pattern Definition

A hypergraph H = {V, E} consists of a set of ver-
tices V and a set of hyperedges E. The concept of 

a hypergraph extends the conventional definition 
of a graph in the sense that each hyperedge can 
connect more than two vertices. It also provides 
an elegant representation for association patterns, 
where every pattern (item set) P can be modeled 
as a hypergraph with each item i ∈ P represented 
as a vertex and a hyperedge connecting all the 
vertices of P. A hyperedge can also be weighted 
in terms of the magnitude of relationships among 
items in the corresponding item set. In the follow-
ing, we define a metric called h-confidence as a 
measure of association for an item set.

• Definition	1: The h-confidence of an item 
set P = {i1, i2,...,im} is defined as follows:

hconf(P) = min{conf{i1 → i2, ... , im}, conf{i2 → i1, 
i3, ... , im},... , conf{im → i1, . . . , im−1}},

where conf follows from the conventional defini-
tion of association rule confidence (Agrawal et 
al., 1993).

• Example 1: Consider an item set P = {A, B, 
C}. Assume that supp({A}) = 0.1, supp({B}) 
= 0.1, supp({C}) = 0.06, and supp({A, B, 
C}) = 0.06, where supp denotes the support 
(Agrawal et al., 1993) of an item set. Since

 conf{A → B, C} = supp({A, B, C})/supp({A}) 
= 0.6,

 conf{B → A, C} = supp({A, B, C})/supp({B}) 
= 0.6,

 conf{C → A, B} = supp({A, B, C})/supp({C}) 
= 1,

therefore, hconf(P) = min{0.6, 0.6, 1} = 0.6.

• Definition	2: Given a set of items I = {i1, i2, . 
. . , in} and a minimum h-confidence thresh-
old hc, an item set P ⊆ I is a hyperclique 
pattern if and only if hconf(P) ≥ hc.
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A hyperclique pattern P can be interpreted as fol-
lows: the presence of any item i ∈ P in a transac-
tion implies the presence of all other items P − {i} 
in the same transaction with probability at least 
hc. This suggests that h-confidence is useful for 
capturing patterns containing items, which are 
strongly related with each other, especially when 
the h-confidence threshold is sufficiently large.

Nevertheless, the hyperclique pattern-mining 
framework may miss some interesting patterns 
too. For example, an item set such as {A, B, C} 
may have very low h-confidence, and yet it may 
be still interesting if one of its rules, say AB → C, 
has very high confidence. Discovering such type 
of patterns is beyond the scope of this chapter.

the equivalence between 
All-Confidence Measure and 
H-Confidence Measure

The following is a formal definition of the all-con-
fidence measure as given in Omiecinski (2003).

• Definition	3: The all-confidence measure 
(Omiecinski, 2003) for an item set P = 
{i1, i2, . . . , im} is defined as allconf(P) = 
min{{conf(A → B | ∀ A, B ∈ P, A   B = P, 
A ∩ B = f}}.

Conceptually, the all-confidence measure checks 
every association rule extracted from a given item 
set. This is slightly different from the h-confidence 
measure, which examines only rules of the form 
{i} → P − {i}, where there is only one item on the 
left-hand side of the rule. Despite their syntactic 
difference, both measures are mathematically 
identical to each other, as shown in the lemma 
below.

• Lemma 1. For an item set P = {i1, i2, . . . , 
im}, hconf(P) ≡ allconf(P).

• Proof: The confidence for any association 
rule A → B extracted from an item set P is 
given by conf{A → B} = supp(A  B)/supp(A) 
= supp(P)/supp(A). From definition 3, we 
may write: 

        ( ) min({ { }})
( )

max({ ( ) | })

allconf P conf A B
supp P

supp A A P

= → =

∀ ⊂

From the anti-monotone property of the 
support measure, max({supp(A)|A ⊂ P}) = 
max1≤k≤m{supp({ik})}. Hence:
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Also, we simplify h-confidence for an item set P, 
as shown in Box 1.

The expression in Box 1 is identical to equa-
tion (1), so Lemma 1 holds.                   

Anti-Monotone Property of 
H-Confidence

Omiecinski has previously shown that the all-
confidence measure has the anti-monotone 
property (Omiecinski, 2003). In other words, if 
the all-confidence of an item set P is greater than 
a user-specified threshold, so is every subset of 
P. Since h-confidence is mathematically identical 
to all-confidence, it is also monotonically non-
increasing as the size of the hyperclique pattern 
increases. Such a property allows us to push the 
h-confidence constraint directly into the min-
ing algorithm. Specifically, when searching for 
hyperclique patterns, the algorithm eliminates 
every candidate pattern of size m having at least 
one subset of size m − 1 that is not a hyperclique 
pattern.

 Besides being anti-monotone, the h-confi-
dence measure also possesses other desirable 
properties. A detailed examination of these prop-
erties is presented in the following sections.

the cross-suPPort ProPerty

In this section, we describe the cross-support 
property of h-confidence and explain how this 
property can be used to efficiently eliminate cross-
support patterns. Also, we show that the cross-
support property is not limited to h-confidence 
and can be generalized to some other association 
measures. Finally, a sufficient condition is pro-
vided for verifying whether a measure satisfies 
the cross-support property or not.

Illustration of the cross-support 
Property

First, a formal definition of cross-support patterns 
is given as follows.

• Definition	4: (Cross-support patterns). Given 
a threshold t, a pattern P is a cross-support 
pattern with respect to t if P contains two 
items x and y such that supp({x})/supp({y}) 
< t, where 0 < t < 1.

Let us consider the diagram shown in Figure 2, 
which illustrates cross-support patterns in a hypo-
thetical data set. In the figure, the horizontal axis 
shows items sorted by support in nondecreasing 
order and the vertical axis shows the correspond-
ing support for items. For example, in the figure, 
the pattern {x, y, j} is a cross-support pattern with 
respect to the threshold t = 0.6, since this pattern 
contains two items x and y such that supp({x})/
supp({y}) = 0.3/0.6 = 0.5 < t = 0.6.

Once we have the understanding of cross-sup-
port patterns, we present the cross-support prop-
erty of h-confidence in the following lemma.

• Lemma 2. (Cross-support property of the 
h-confidence measure). Any cross-support 
pattern P with respect to a threshold t is 
guaranteed to have hconf(P) < t.

• Proof: Since P is a cross-support pattern 
with respect to the threshold t, by definition 
4, we know P contains at least two items 
x and y such that supp({x})/supp({y}) < t, 
where 0 < t < 1. Without loss of generality, 
let P = {..., x, ..., y, ...}. By equation (1), we 
have what is show in Box 2.

        
Note that the anti-monotone property of support is 
applied to the numerator part of the h-confidence 
expression in the proof.                                

• Corollary 1. Given an item y, all patterns 
that contain y and at least one item with 
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support less than t·supp({y}) (for 0 < t < 1) 
are cross-support patterns with respect to 
t and are guaranteed to have h-confidence 
less than t. All such patterns can be auto-
matically eliminated without computing 
their h-confidence if we are only interested 
in patterns with h-confidence greater than 
t.

• Proof: This corollary follows from definition 
4 and Lemma 2.                    

For a given h-confidence threshold, the above 
Corollary provides a systematic way to find and 
eliminate candidate item sets that are guaranteed 
not to be hyperclique patterns. In the following, 
we present an example to illustrate the cross-sup-
port pruning.

• Example 2: Figure 2 shows the support 
distributions of five items and their support 
values. By Corollary 1, given a minimum 
h-confidence threshold hc = 0.6, all patterns 
contain item y and at least one item with 
support less than supp({y})·hc =0.6 × 0.6 
= 0.36 are cross-support patterns and are 
guaranteed to have h-confidence less than 
0.6. Hence, all patterns containing item y 
and at least one of l, m, x do not need to be 
considered if we are only interested in pat-
terns with h-confidence greater than 0.6.

( ) { }

{ }

( )
max , ({ }), , ({ }),

({ }) ({ })
max , ({ }), , ({ }), ({ })

supp Phconf P
supp x supp y

supp x supp x t
supp x supp y supp y

=

≤ ≤ <

  

  

Box 2.

Figure 2. An example to illustrate the cross-support pruning
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Generalization of the cross-support 
Property

In this subsection, we generalize the cross-support 
property to other association measures. First, we 
give a generalized definition of the cross-support 
property.

• Definition	 5: (Generalized cross-support 
property). Given a measure f, for any cross-
support pattern P with respect to a threshold 
t, if there exists a monotone increasing func-
tion g such that f (P) < g(t), then the measure 
f has the cross-support property.

Given the h-confidence measure, for any cross-
support pattern P with respect to a threshold t, if 
we let the function g(l) = l, then we have hconf(P) 
< g(t) = t by Lemma 2. Hence, the h-confidence 
measure has the cross-support property. Also, if 
a measure f has the cross-support property, the 
following theorem provides a way to automatically 
eliminate cross-support patterns.

• Theorem 1: Given an item y, a measure 
f with the cross-support property, and a 
threshold θ, any pattern P that contains y 
and at least one item x with support less than 
g-1 (q) ⋅ supp({y}) is a cross-support pattern 

with respect to the threshold g-1 (q) and is 
guaranteed to have f (P) < θ, where g is the 
function to make the measure f satisfy the 
generalized cross-support property.

• Proof: Since supp({x}) < g-1(θ)·supp({y}), 
we have: 

 
  

 

1({ }) ( )
({ })

supp x g
supp y

-<

By definition 4, the pattern P is a cross-support 
pattern with respect to the threshold g-1 (q). Also, 
because the measure f has the cross-support 
property, by definition 5, there exists a monotone 
increasing function g such that f(P) < g (g-1(q)) 
= q. Hence, for the given threshold θ, all such 
patterns can be automatically eliminated if we 
are only interested in patterns with the measure 
f greater than θ.                          

Table 2 shows two measures that have the 
cross-support property. The corresponding 
monotone increasing functions for these mea-
sures are also shown in this table. However, some 
measures, such as support and odds ratio (Tan, 
Kumar, & Srivastava, 2002), do not possess such 
a property.

Table 2. Examples of measures of association that have the cross-support property (assuming that 
supp({x}) < supp({y}))

Measure Computation formula Upper bound Function

Cosine ({ , })
({ }) ({ })

supp x y
supp x supp y

({ })
({ })

supp x
supp y

( )g l l=

Jaccard ({ , })
({ }) ({ }) ({ , })

supp x y
supp x supp y supp x y+ -

({ })
({ })

supp x
supp y

( )g l l=
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the h-confIdence As A 
MeAsure of AssocIAtIon

In this section, we first show that the strength 
or magnitude of a relationship described by 
h-confidence is consistent with the strength or 
magnitude of a relationship described by two 
traditional association measures: the Jaccard 
measure (Rijsbergen, 1979) and the correlation 
coefficient (Reynolds, 1977).

Given a pair of items P = {i1, i2}, the affinity 
between both items using these measures is de-
fined as seen in Box 3.

Also, we demonstrate that h-confidence is a 
measure of association that can be used to capture 
the strength or magnitude of a relationship among 
several objects.

Relationship Between H-confidence 
and Jaccard

In the following, for a size-2 hyperclique pattern 
P, we provide a lemma that gives a lower bound 
for jaccard(P).

• Lemma 4. If an item set P = {i1, i2} is a 
size-2 hyperclique pattern, then jaccard (P) 
≥ hc/2.

• Proof: By Eq. (1):

 
1 2

1 2

({ , })( )
max{ ({ }), ({ })}

supp i ihconf P
supp i supp i

=

Without loss of generality, let supp({i1}) ≥ 
supp({i2}). Given that P is a hyperclique pat-
tern, 

 
1 2

1

({ , })( )
({ }) c

supp i ihconf P h
supp i

= ≥

Furthermore, since supp({i1}) ≥ supp({i2}), (we 
have what is shown in Box 4). 

Lemma 4 suggests that if the h-confidence 
threshold hc is sufficiently high, then all size-
2 hyperclique patterns contain items that are 
strongly related with each other in terms of the 
Jaccard measure, since the Jaccard values of 
these hyperclique patterns are bounded from 
below by hc/2.

Relationship Between H-Confidence 
and correlation

In this subsection, we illustrate the relationship 
between h-confidence and Pearson’s correlation. 
More specifically, we show that if at least one item 
in a size-2 hyperclique pattern has a support value 

1 2

1 2 1 2

1 2 1 2

1 2 1 2

({ , })( ) ,
({ }) ({ }) ({ , })

({ , }) ({ }) ({ }), ( ) .
({ }) ({ })(1 ({ }))(1 ({ }))
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supp i supp i supp i i
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=
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Box 3.

1 2 1 2

1 2 1 2 1
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({ }) ({ }) ({ , }) 2 ({ }) c

supp i i supp i ijaccard P h
supp i supp i supp i i supp i

= ≥ ≥
+ -

Box 4.
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less than the minimum h-confidence threshold, 
hc, then two items within this hyperclique pattern 
must be positively correlated.

• Lemma 5. Let S be a set of items and hc be 
the minimum h-confidence threshold, we 
can form two item groups: S1 and S2 such 
that S1 = {x|supp({x}) < hc and x∈S} and S2 
= {y|supp({y}) ≥ hc and y ∈ S}. Then, any 
size-2 hyperclique pattern P = {A, B} has 
a positive correlation coefficient in each of 
the following cases: Case 1: A ∈ S1 and B ∈ 
S2. Case 2: A ∈ S1 and B ∈ S1.

• Proof: For a size-2 hyperclique pattern P = 
{A, B}, without loss of generality, we assume 
that supp({A}) ≤ supp({B}). Since hconf(P) 
≥ hc, we know:

 

({ , })
max{ ({ }), ({ })}

({ , })
({ }) c

supp A B
supp A supp B

supp A B h
supp B

=

≥

In other words, supp({A, B}) ≥ hc · supp({B}).
From the definition of Pearson’s correlation 

coefficient, we have what is shown in Box 5.
Also:

 

({ })(1 ({ })) ( ({ })
1 ({ })) / 2 1/ 2

supp A supp A supp A
supp A
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So

 
({ , }) 4( ({ , }) ({ }) ({ }))
4 ({ })( ({ }))c
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• Case 1: If A ∈ S1 and B ∈ S2

Since A ∈ S1 and B ∈ S2, we know supp({A}) < 
hc due to the way that we construct S1 and S2. As 
a result, 4supp({B})(hc − supp({A})) > 0. Hence, 
f > 0.

• Case 2: if A ∈ S1 and B ∈ S1

Since A ∈ S1, we know supp({A}) < hc due to 
the way that we construct S1 and S2. As a re-
sult, 4supp({B})(hc − supp({A})) > 0. Hence, f 
> 0.                          

• Example 3. Figure 3 illustrates the relation-
ship between h-confidence and correlation. 
Assume that the minimum h-confidence 
threshold is 0.45. In the figure, there are 
four pairs including {a, b}, {c, d}, {c, e}, 
{d, e} with h-confidence greater than 0.45. 
Among these four pairs, {c, d}, {c, e}, {d, e} 
contain at least one item with the support 
value less than the h-confidence threshold, 
0.45. By Lemma 5, all these three pairs 
have positive correlation. Furthermore, if 
we increase the minimum h-confidence 
threshold to be greater than 0.6 that is the 
maximum support of all items in the given 
data set, all size-2 hyperclique patterns are 
guaranteed to have positive correlation.

In practice, many real-world data sets, such as 
the point-of-sale data collected at department 
stores, contain very few items with considerably 
high support. For instance, the retail data set 
used in our own experiment contains items with 

({ , }) ({ }) ({ })({ , })
({ }) ({ })(1 ({ }))(1 ({ }))

supp A B supp A supp BA B
supp A supp B supp A supp B

-
=

- -

Box 5.
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a maximum support equals to 0.024. Following 
the discussion presented above, if we set the 
minimum h-confidence threshold above 0.024, 
all size-2 hyperclique patterns guarantee to be 
positively correlated. To make this discussion 
more interesting, recall the well-known coffee-tea 
example given in (Brin et al., 1997). This example 
illustrates the drawback of using confidence as 
a measure of association. Even though the con-
fidence for the rule tea → coffee may be high, 
both items are in fact negatively correlated with 
each other. Hence, the confidence measure can 
be misleading. Instead, with h-confidence, we 
may ensure that all derived size-2 patterns are 
positively correlated, as long as the minimum 
h-confidence threshold is above the maximum 
support of all items.

H-Confidence for Measuring the 
relationship among several objects

In this subsection, we demonstrate that the h-
confidence measure can be used to describe the 
strength or magnitude of a relationship among 
several objects.

Given a pair of items P = {i1, i2}, the cosine 
similarity between both items is defined as fol-
lows:

1 2

1 2

({ , })( )
({ }) ({ })

supp i icosine P
supp i supp i

=

Note that the cosine similarity is also known as 
uncentered Pearson’s correlation coefficient (when 
computing Pearson’s correlation coefficient, 
the data mean is not subtracted). For a size-2 
hyperclique pattern P, we first derive a lower 
bound for the cosine similarity of the pattern P, 
cosine(P), in terms of the minimum h-confidence 
threshold hc.

• Lemma 6. If an item set P = {i1, i2} is a size-2 
hyperclique pattern, then cosine(P) ≥ hc.

• Proof: By Eq. (1):

 
1 2

1 2

({ , })( )
max{ ({ }), ({ })}

supp i ihconf P
supp i supp i

=

Without loss of generality, let supp({i1}) ≥ 
supp({i2}). Given that P is a hyperclique pat-
tern:

Figure 3. Illustration of the relationship between h-confidence and correlation
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Since supp({i1}) ≥ supp({i2}):
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Lemma 6 suggests that if the h-confidence 
threshold hc is sufficiently high, then all size-
2 hyperclique patterns contain items that are 
strongly related with each other in terms of the 
cosine measure, since the cosine values of these 
hyperclique patterns are bounded from below 
by hc.

For the case that hyperclique patterns have 
more than two objects, the following theorem 
guarantees that if a hyperclique pattern has an 
h-confidence value above the minimum h-con-
fidence threshold, hc, then every pair of objects 
within the hyperclique pattern must have a cosine 
similarity great than or equal to hc.

• Theorem 2: Given a hyperclique pattern P 
= {i1, i2, . . . , ik } (k > 2) at the h-confidence-
threshold hc, for any size-2 item set Q = {il , 
im} (1≤ l ≤ k, 1≤ m ≤ k, and l ≠ m) such that 
Q ⊂ P, we have cosine(Q) ≥ hc.

• Proof: By the anti-monotone property of 
the h-confidence measure and the given 
condition that Q ⊂ P, we know Q is a also 
hyperclique pattern. Then, by Lemma 6, we 
know cosine(Q) ≥ hc. 

• Clique View: Indeed, a hyperclique pattern 
can be viewed as a clique, if we construct a 
graph in the following way. Treat each object 
in a hyperclique pattern as a vertex and put 
an edge between two vertices if the cosine 
similarity between two objects is above the 
h-confidence threshold, hc. According to 
Theorem 2, there will be an edge between 

any two objects within a hyperclique pat-
tern. As a result, a hyperclique pattern is a 
clique.

Viewed as cliques, hyperclique patterns have ap-
plications in many different domains.

For instance, Xiong, Steinbach, Tan, and 
Kumar (2004) show that the hyperclique pat-
tern is the best candidate for pattern preserving 
clustering—a new paradigm for pattern based 
clustering. Also, Xiong, He, Ding, Zhang, Kumar 
and Holbrook (2005) describe the use of hyper-
clique pattern discovery for identifying functional 
modules in protein complexes.

hyPerclIque MIner AlGorIthM

The hyperclique miner (see algorithm one) is 
an algorithm that can generate all hyperclique 
patterns with support and h-confidence above 
user-specified minimum support and h-confidence 
thresholds.

Explanation of the Detailed Steps of the 
Algorithm

Step 1 scans the database and gets the support for 
every item. Items with support above min_supp 
form size-1 candidate set C1. The h-confidence 
values for size-1 item sets are 1. All items in the set 
C1 are sorted by the support values and relabeled 
in alphabetic order.

Step 2 to Step 4 loops through 2 to K–1 to 
generate qualified hyperclique patterns of size 2 
or more. It stops whenever an empty candidate 
set of some size is generated.

Step 3 uses generalized apriori_gen to gener-
ate candidate hyperclique patterns of size k from 
hyperclique patterns of size k – 1. The general-
ized apriori_gen function is an adaptation of the 
apriori_gen function of the Apriori algorithm 
(Agrawal & Srikant, 1994). Let Ck−1 indicate the 
set of all hyperclique patterns of size k–1. The 
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hyperclique Miner
Input:

(�) A set F of K Boolean feature types F = {f�, f�, ... , fK} 
(�) A set T of N transactions T = {t�, t�, ..., tN }, each ti ∈ T is a record with K attributes {i�, i�, ..., 
iK } taking values in {0, �}, where the ip (1 ≤ p ≤ K) is the Boolean value for the feature type fp.
(3) A user specified minimum h-confidence threshold (hc)
(4) A user specified minimum support threshold (min_supp)

output:
   hyperclique patterns with h-confidence > hc and support > min_supp
Method:
(�) Get size-� prevalent items
(�) for the size of item sets in (�, �, . . . , K−1) do
(3) Generate candidate hyperclique patterns using the generalized apriori_gen algorithm
(4) Generate hyperclique patterns
(�) end; 

Algorithm 1.

function works as follows. First, in the join step, 
we join Ck−1 with Ck−1 and get candidate set Ck. 
Next in the prune step, we delete all candidate 
hyperclique patterns c ∈ Ck based on two major 
pruning techniques:

a. Pruning based on anti-monotone property 
of	h-confidence	and	support: If any one of 
the k–1 subsets of c does not belong to Ck−1, 
then c is pruned. (Recall that this prune step 
is also done in apriori_gen by Agrawal 
and Srikant because of the anti-monotone 
property of support. Omiecinski (2003) 
also applied the anti-monotone property of 
all-confidence in his algorithm.)

b. Pruning of cross-support patterns by 
using the cross-support property of h-
confidence:	By corollary 1, for the given 
h-confidence threshold hc and an item y, 
all patterns that contain y and at least one 

item with support less than hc·supp({y}) are 
cross-support patterns and are guaranteed to 
have h-confidence less than t. Hence, all such 
patterns can be automatically eliminated.

Note that example 4 illustrates the major pruning 
techniques applied in this step.

Step 4 computes exact support and h-confi-
dence for all candidate patterns in Ck and prunes 
this candidate set using the user specified support 
threshold min supp and the h-confidence thresh-
old hc. All remaining patterns are returned as 
hyperclique patterns of size k.

• Example 4: Figure 4 illustrates the process of 
pruning the candidate generation step (Step 
3) of the hyperclique miner algorithm. In 
this example, we assume the minimum sup-
port threshold to be zero and the minimum 
h-confidence threshold to be 0.6. Consider 
the state after all size-1 hyperclique patterns 
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have been generated. Note that all these 
singleton items have support greater than 
0. Also, by equation (1), h-confidence of all 
size-1 item sets is 1.0, which is greater than 
the user-specified h-confidence threshold of 
0.6. Hence, all these singleton item sets are 
hyperclique patterns.

There are two major pruning techniques that 
we can enforce in step 3 while generating size-2 
candidate item sets from size-1 item sets.

a. Pruning based on the anti-monotone 
property: No pruning is possible using 
this property since all size-1 item sets are 
hyperclique patterns.

b. Pruning based on cross-support patterns 
by using the cross-support property: 
Given an h-confidence threshold 0.6, for the 
item 2, we can find an item 3 with supp({3}) 
= 0.3 < supp({2}) · 0.6 = 0.36 in the sorted 

item list {1, 2, 3, 4, 5}. If we split this item list 
into two item sets L={1, 2} and U={3, 4, 5}, 
any pattern involving items from both L and 
U is a cross-support pattern with respect to 
the threshold 0.6. By Lemma 2, the h-confi-
dence values for these cross-support patterns 
are less than 0.6. Since the h-confidence 
threshold is equal to 0.6, all cross-support 
patterns are pruned. In contrast, without 
applying cross-support pruning, we have to 
generate six cross-support patterns includ-
ing {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, and 
{2, 5} as candidate patterns and prune them 
later by computing the exact h-confidence 
values.

For the remaining size-2 candidate item sets, the 
h-confidence of the item set {4, 5} is supp({4, 
5})/max{supp({4}), supp({5})} = 0.1/0.2 = 0.5., 
which is less than the h-confidence threshold, 

Figure 4. A running example with a support threshold = 0 and an h-confidence threshold = 0.6. Note 
that crossed nodes are pruned by the anti-monotone property and circled nodes are pruned by the cross-
support property.
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0.6. Hence, the item set {4, 5} is not a hyperclique 
pattern and is pruned.

Next, we consider pruning in step 3 while 
generating size-3 candidate item sets from size-2 
hyperclique patterns.

c. Pruning based on the anti-monotone 
property: From the above, we know that the 
item set {4, 5} is not a hyperclique pattern. 
Then, we can prune the candidate pattern {3, 
4, 5} by the anti-monotone property of the 
h-confidence measure, since this pattern has 
one subset {4, 5}, which is not a hyperclique 
pattern.

hyPerclIque-bAsed IteM 
clusterInG APProAch

In this section, we describe how to use hy-
perclique patterns for clustering items in high 
dimensional space. For high dimensional data, 
traditional clustering schemes such as Autoclass 
(Cheeseman & Stutz, 1996) and K-means (Jain & 
Dubes, 1998) tend to produce poor results when 
directly applied to large, high-dimensional data 
sets (Agrawal, Gehrke, Gunopulos & Raghavan, 
1998). One promising approach is to cluster the 
data using a hypergraph partitioning algorithm 
(Han et al., 1998). More specifically, a hypergraph 
is constructed with individual items as vertices 
and frequent itemsets as hyperedges connecting 
between these vertices. For example, if {A, B, C} 
is a frequent itemset, then a hyperedge connecting 
the vertices for A, B, and C will be added. The 
weight of the hyperedge is given by the average 
confidence of all association rules generated 
from the corresponding itemset. The resulting 
hypergraph is then partitioned using a hyper-
graph-partitioning algorithm such as HMETIS4 
to obtain clusters.

Although the hypergraph-based clustering 
algorithm has produced promising results (Han 
et al., 1998), we believe that it can be further 

improved if the hypergraph contains a good 
representative set of high-quality hyperedges. 
We believe frequent itemsets may not provide 
such a good representation because they include 
cross-support patterns, which may have low 
affinity but relatively high average confidence. 
In addition, many low support items cannot be 
covered by frequent itemsets unless the minimum 
support threshold is sufficiently low. However, if 
the threshold is indeed low enough, a large num-
ber of frequent itemsets will be extracted, thus 
resulting in a very dense hypergraph. It will be 
difficult for a hypergraph partitioning algorithm 
to partition such a dense hypergraph, which often 
leads to poor clustering results.

In this chapter, we use hyperclique patterns 
as an alternative to frequent itemsets. In the 
hypergraph model, each hyperclique pattern is 
represented by a hyperedge whose weight is equal 
to the h-confidence of the pattern. For example, if 
{A, B, C} is a hyperclique pattern with h-confi-
dence equals to 0.8, then the hypergraph contains 
a hyperedge that connects the vertices A, B, and 
C. The weight for this hyperedge is 0.8.

There are several advantages of using the hy-
perclique-based clustering algorithm. First, since 
hyperclique patterns are strong affinity patterns, 
they can provide a good representative set of hy-
peredges to seed a hypergraph-based clustering 
algorithm. Second, hyperclique patterns can be 
extracted for very low support items without mak-
ing the hypergraph becomes too dense. Finally, 
hyperclique-based clustering algorithm is also 
more tolerant to noise compared to traditional 
clustering algorithms such as k-means because it 
can explicitly remove the weakly related items.

exPerIMentAl results

In this section, we present extensive experiments 
to show the performance of hyperclique miner, 
the quality of hyperclique patterns, and the ap-
plications of hyperclique patterns. Specifically, we 
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demonstrate: (1) the effectiveness of h-confidence 
pruning, (2) the scalability of hyperclique miner, 
(3) the overall quality of hyperclique patterns, (4) 
hyperclique-based item clustering, and (5) the ap-
plication of hyperclique patterns for identifying 
protein functional modules.

the experimental setup

Experimental Data Sets

Our experiments were performed on both real 
and synthetic data sets. By using the IBM Quest 
synthetic data generator (Agrawal & Srikant, 
1994), synthetic data sets were generated which 
gives us the flexibility of controlling the size and 
dimensionality of the database. A summary of the 
parameter settings used to create the synthetic 
data sets is presented in Table 3, where |T| is the 
average size of a transaction, N is the number of 

items, and |L| is the maximum number of potential 
frequent item sets. Each data set contains 1,00,000 
transactions, with an average frequent pattern 
length equal to 4.

The real data sets are obtained from several 
application domains. Some characteristics of 
these data sets5 are shown in Table 4. In the table, 
the pumsb and pumsb* data sets correspond 
to binary versions of a census data set. The dif-
ference between them is that pumsb* does not 
contain items with support greater than 80%. The 
LA1 data set is part of the TREC-5 collection6 
and contains news articles from the Los Angeles 
Times. In addition, retail is a market-basket 
data set obtained from a large mail-order com-
pany. The S&P 500 index data set consists of 
the daily price movement of various stocks that 
belong to the S&P 500 index from January 1994 
to October 1996. Finally, the TAP-MS data set 
(Gavin, et al., 2002) is a protein complex data 

Table 3. Parameter settings for synthetic data sets

Data set name |T| |L| N Size (MBytes)

T5.L100.N1000 5 100 1000 0.94

T5.L500.N5000 5 500 5000 2.48

T10.L1000.N10000 10 1000 10000 4.96

T20.L2000.N20000 20 2000 20000 10.73

T30.L3000.N30000 30 3000 30000 16.43

T40.L4000.N40000 40 4000 40000 22.13

Table 4. Real data set characteristics

Data set # Item # Record Source

Pumsb 2113 49046 IBM Almaden

Pumsb* 2089 49046 IBM Almaden

LA1 29704 3204 TREC-5

Retail 14462 57671 Retail Store

S&P 500 932 716 Stock Market

TAP-MS 1440 232 Gavin’s Protein Complexes
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set, which summarizes large-scale experimental 
studies of multi-protein complexes for the yeast 
Saccharomyces Cerevisiae.

Experimental Platform

Our experiments were performed on a Sun 
Ultra 10 workstation with a 440 MHz CPU and 
128 Mbytes of memory running the SunOS 5.7 
operating system. We implemented hyperclique 
miner by modifying the publicly available Apriori 
implementation by Borgelt (http://fuzzy.cs.uni-
magdeburg.de/∼borgelt). When the h-confidence 
threshold is set to zero, the computational perfor-
mance of hyperclique miner is approximately the 
same as the Borgelt’s implementation of Apriori 
(Agrawal & Srikant, 1994).

the Pruning effect of hyperclique 
Miner

The purpose of this experiment is to demonstrate 
the effectiveness of the h-confidence pruning 
on hyperclique pattern generation. Note that 
hyperclique patterns can also be derived by first 
computing frequent patterns at very low levels 
of support, and using a post-processing step to 

eliminate weakly-related cross-support patterns. 
Hence, we use the conventional frequent pattern 
mining algorithms as the baseline to show the 
relative performance of hyperclique miner.

First, we show how the performance of the 
algorithm changes as the h-confidence threshold 
is increased. Figure 5(a) shows the number of 
patterns generated from the LA1 data set at dif-
ferent h-confidence thresholds. As can be seen, 
at any fixed support threshold, the number of 
generated patterns increases quite dramatically 
with the decrease of the h-confidence thresh-
old. For example, when the support threshold 
is 0.01 and the h-confidence threshold is zero, 
the number of patterns generated is greater than 
107. In contrast, there are only several hundred 
hyperclique patterns when the h-confidence 
threshold is increased to 40%. Recall that, when 
the h-confidence threshold is equal to zero, the 
hyperclique miner essentially becomes the Apriori 
algorithm, as it finds all frequent patterns above 
certain support thresholds. As shown in Figure 
5(a), Apriori is not able to find frequent patterns 
at support level less than 0.01 due to excessive 
memory requirements. This is caused by the rapid 
increase of the number of patterns generated as 
the support threshold is decreased. On the other 

Figure 5.

(a) Number of patterns generated by hyperclique 
miner on LA1 data set

(b) the execution time of hyperclique miner on 
LA1 data set
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hand, for an h-confidence threshold greater than 
or equal to 10%, the number of patterns generated 
increases much less rapidly with the decrease in 
the support threshold. 

Figure 5(b) shows the execution time of hyper-
clique miner on the LA1 data set. As can be seen, 
the execution time reduces significantly with the 
increase of the h-confidence threshold. Indeed, 
our algorithm identifies hyperclique patterns in 
just a few seconds at 20% h-confidence threshold 
and 0.005 support threshold. In contrast, the tradi-
tional Apriori, which corresponds to the case that 
h-confidence is equal to zero in Figure 5(b), breaks 
down at 0.005 support threshold due to excessive 
memory and computational requirement. 

The above results suggest a trade-off between 
execution time and the number of hyperclique pat-
terns generated at different h-confidence thresh-
olds. In practice, analysts may start with a high 
h-confidence threshold first at support threshold 
close to zero, to rapidly extract the strongly af-
filiated patterns, and then gradually reduce the 
h-confidence threshold to obtain more patterns 
that are less tightly-coupled.

 Next, we evaluate the performance of hyper-
clique miner on dense data sets such as pumsb 
and pumsb*. Recently, Zaki and Hsiao proposed 

the CHARM algorithm (Zaki & Hsiao, 2002) to 
efficiently discover frequent closed item sets. As 
shown in their paper, for the pumsb and pumsb* 
data sets, CHARM can achieve relatively better 
performance than other state-of-the-art pattern 
mining algorithms such as CLOSET (Pei et al., 
2000) and MAFIA (Burdick et al., 2001) when the 
support threshold is low. Hence, for the pumsb 
and pumsb* data sets, we chose CHARM as 
the base line for the case when the h-confidence 
threshold is equal to zero.

Figure 6(a) shows the number of patterns gen-
erated by hyperclique miner and CHARM on the 
pumsb data set. As can be seen, when the support 
threshold is low, CHARM can generate a huge 
number of patterns, which is hard to analyze in 
real applications. In contrast, the number of pat-
terns generated by hyperclique miner is several 
orders of magnitude smaller than the number of 
patterns found by CHARM. In addition, CHARM 
is unable to generate patterns when the support 
threshold is less than or equals to 0.4, as it runs 
out of memory. With a support threshold greater 
than 0.4, CHARM can only identify associations 
among a very small fraction of the items. However, 
hyperclique miner is able to identify many patterns 
containing items that are strongly related with 

Figure 6. On the pumsb data set

(a) Number of patterns generated by hyperclique 
miner and CHARM

(b) The execution time of hyperclique miner and 
CHARM
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each other even at very low levels of support. For 
instance, we obtained a long pattern containing 
9 items with the support 0.23 and h-confidence 
94.2%. Recall from Table 1 that nearly 96.6% of 
the items have support less than 0.4. 

Figure 6(b) shows the execution time of hy-
perclique miner and CHARM on the pumsb data 
set. As shown in the figure, the execution time 
of hyperclique miner increases much less rapidly 
(especially at higher h-confidence thresholds) 
than that of CHARM. With h-confidence prun-
ing, we can use hyperclique miner to discover 
hyperclique patterns even at support threshold 
equal to zero. Finally, when we continue to re-
duce the h-confidence threshold, the runtime of 
hyperclique miner goes up. However, it is possible 
to incorporate h-confidence pruning strategy into 
the CHARM implementation to further improve 
the performance of hyperclique miner on dense 
data sets.

Similar results are also obtained from the 
pumsb* data set, as shown in Figure 7(a) and 
(b). For the pumsb* data set, CHARM is able 
to find patterns for the support threshold as low 
as 0.04. This can be explained by the fact that the 
pumsb* data set do not include those items having 
support greater than 0.8, thus manually removing 

a large number of weakly related cross-support 
patterns between the highly frequent items and 
the less frequent items. Hyperclique miner does 
not encounter this problem because it automati-
cally removes the weakly related cross-support 
patterns using the cross-support property of the 
h-confidence measure. Note that, in the pumsb* 
data set, there are still more than 92% (1925 items) 
of the items that have support less than 0.04. 
CHARM is unable to find any patterns involving 
those items with support less than 0.04, since it 
runs out of memory when the support threshold 
is less than 0.04.

The Effect of Cross-Support Pruning

Figure 8(a) illustrates the effect of cross-support 
pruning on the LA1 data set. There are two curves 
in the figure. The lower one shows the execution 
time when both cross-support and anti-monotone 
pruning are applied. The higher one corresponds 
to the case that only anti-monotone pruning is 
applied. As can be seen, cross-support pruning 
leads to significant reduction in the execution time. 
Similarly, Figure 8(b) shows the effectiveness of 
cross-support pruning on the pumsb data set. 
Note that the pruning effect of the cross-support 

Figure 7. On the pumsb* data set

(a) Number of patterns generated by hyperclique 
miner and CHARM

(b) The execution time of hyperclique miner and 
CHARM
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property is more dramatic on the pumsb data set 
than on the LA1 data set. This is because cross-
support pruning tends to work better on dense 
data sets with skewed support distributions, such 
as pumsb.

scalability of hyperclique Miner

We tested the scalability of hyperclique miner with 
respect to the number of items on the synthetic 
data sets listed in Table 3. In this experiment, we 
set the support threshold to 0.01% and increase 
the number of items from 1,000 to 40,000. Figure 
9(a) shows the scalability of hyperclique miner 
in terms of the number of patterns identified. As 
can be seen, without h-confidence pruning, the 
number of patterns increases dramatically and the 
algorithm breaks down for the data set with 40,000 
items. With h-confidence pruning, the number of 
patterns generated is more manageable and does 
not grow fast. In addition, Figure 9(b) shows the 
execution time for our scale-up experiments. As 
can be seen, without h-confidence pruning, the 
execution time grows sharply as the number of 
items increases. However, this growth with respect 
to the number of items is much more moderate 
when the h-confidence threshold is increased.

quality of hyperclique Patterns

In this experiment, we examined the quality of 
patterns extracted by hyperclique miner.

Table 5 shows several interesting hyperclique 
patterns identified at low levels of support from 
the LA1 data set. It can be immediately seen that 
the hyperclique patterns contain words that are 
closely related to each other. For example, the 
pattern {arafat, yasser, PLO, Palestine} includes 
words that are frequently found in news articles 
about Palestine. These patterns cannot be directly 
discovered using standard frequent pattern mining 
algorithms due to their low support values.

Table 6 shows some of the interesting hyper-
clique patterns extracted at low levels of support 
from the retail data set. For example, we identi-
fied a hyperclique pattern involving closely related 
items such as Nokia battery, Nokia adapter, and 
Nokia wireless phone. We also discovered several 
interesting patterns containing very low support 
items such as {earrings, gold ring, bracelet}. 
Customers rarely purchase these items, but they 
are interesting because they are expensive and 
belong to the same product category.

We also evaluated the affinity of hyperclique 
patterns by the correlation measure. Specifically, 

Figure 8. 

(a) The effect of cross-support pruning on the LA1 
data set

(b) The effect of cross-support pruning on the 
pumsb data set
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for each hyperclique pattern X = {x1, x2, ... xk }, we 
calculate the correlation for each pair of items (xi, 
xj) within the pattern. The overall correlation of a 
hyperclique pattern is then defined as the average 
pair wise correlation of all the items. Note that 
this experiment was conducted on the Retail 
data set with the h-confidence threshold 0.8 and 
the support threshold 0.0005.

Figure 10 compares the average correlation 
for hyperclique patterns vs. non-hyperclique 
patterns. We sorted the average correlation and 
displayed them in increasing order. Notice that the 
hyperclique patterns have extremely high average 
pair wise correlation compared to the nonhyper-
clique patterns. This result empirically shows 
that hyperclique patterns contain items that are 
strongly related with each other, especially when 
the h-confidence threshold is relatively high.

hyperclique-based Item clustering

In this section, we illustrate the application of 
hyperclique patterns as an alternative to frequent 
patterns in hypergraph-based clustering approach 
(Han et al., 1998). We use the S&P 500 index data 
set for our clustering experiments.

Table 7 shows the dramatic increase in the 
number of frequent patterns as the minimum 
support threshold is decreased. As can be seen, 
the number of frequent patterns increases up to 
11,486,914 when we reduce the support thresh-
old to 1%. If all these frequent item sets are 
used for hypergraph clustering, this will create 
an extremely dense hypergraph and makes the 
hypergraph-based clustering algorithm become 
computationally intractable. In Han et al. (1998), 
the authors have used a higher minimum support 
threshold, that is, 3%, for their experiments and 
obtained 19,602 frequent item sets covering 440 
items. A hypergraph consisting of 440 vertices 
and 19,602 hyperedges was then constructed and 
40 partitions were generated. Out of 40 partitions6, 
16 of them are clean clusters as they contain 
stocks primarily from the same or closely related 
industry groups.

With hyperclique patterns, we can construct 
hypergraphs at any support threshold, and thus 
covering more items. For instance, with a mini-
mum h-confidence threshold 20% and a support 
threshold 0%, we obtain 11,207 hyperclique 
patterns covering 861 items. A hypergraph con-
sisting of 861 vertices and 11,207 hyperedges 
is then constructed and partitioned into smaller 

Figure 9. With increasing number of items

(a) Number of patterns generated by hyperclique 
miner

(b) The execution time of hyperclique miner
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clusters. For comparison purposes, we partitioned 
the hypergraph into 80 partitions to ensure that 
the average size of clusters is almost the same as 
the average size of the 40 clusters obtained using 
frequent patterns. Note that for both approaches, 
we only use patterns containing two or more items 
as hyperedges.

Our experimental results suggest that the 
hyperclique pattern approach can systemati-
cally produce better clustering results than the 
frequent pattern approach. First, many items 
with low levels of support are not included in the 
frequent pattern approach. Specifically, there are 
421 items covered by hyperclique pattern based 
clusters that are not covered by frequent pattern 
based clusters. Second, the hypergraph clustering 
algorithm can produce a larger fraction of clean 
clusters using hyperclique patterns than frequent 
patterns—41 out of 80 partitions vs. 16 out of 40 
partitions. Third, all the clean clusters identified 
by the frequent pattern approach were also present 
in the results by the hyperclique pattern approach. 

Finally, for the same clean cluster identified by both 
approaches, there are more same category items 
included by the hyperclique-based approach.

Table 8 shows some of the clean hyperclique 
pattern based clusters that appear at low levels 
of support (around 1% support). Such clusters 
could not be identified by the frequent pattern 
approach. As the table shows, our hyperclique 
pattern approach was able to discover retail, 
chemical, health-product, power and communica-
tion clusters. A complete list of clusters is given 
in our Technical Report (Xiong et al., 2003a).

We have also applied the graph-partitioning 
scheme in CLUTO7. This algorithm takes the 
adjacency matrix of the similarity graph between 
the n objects to be clustered as input. The ex-
periment results indicate that this approach can 
produce much worse clustering results than the 
hyperclique-based approach. For instance, out 
of the 80 clusters derived by CLUTO, less than 
30 of them are clean clusters. This result is not 
surprising since the graph-partitioning scheme 

Table 5. Hyperclique patterns from LA1

Table 6. Hyperclique patterns from retail

Hyperclique patterns support h-conf (%)

{najibullah, kabul, afghan} 0.002 54.5

{steak, dessert, salad, sauce} 0.001 40.0

{arafat, yasser, PLO, Palestine} 0.004 52.0

{shamir, yitzhak, jerusalem, gaza} 0.002 42.9

{amal, militia, hezbollah, syrian, beirut} 0.001 40.0

Hyperclique patterns support h-conf (%)

{earrings, gold ring, bracelet} 0.00019 45.8

{nokia battery, nokia adapter, nokia wireless phone} 0.00049 52.8

{coffee maker, can opener, toaster} 0.00014 61.5

{baby bumper pad, diaper stacker, baby crib sheet} 0.00028 72.7

{skirt tub, 3pc bath set, shower curtain} 0.0026 74.4

{jar cookie, canisters 3pc, box bread, soup tureen, goblets 8pc} 0.00012 77.8
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Table 7. Numbers of frequent patterns with the 
decrease of support thresholds on the S&P data 
set

Support # Frequent patterns # Items covered

3% 19602 440

2% 149215 734

1% 11486914 915

considers only information about pairs of items 
but not higher order interactions.

In addition, we also applied the improved 
version of the k-means clustering algorithm 
in CLUTO. For this partition-based clustering 
algorithm, the similarity between objects can 
be computed using the cosine measure, the cor-
relation coefficient, or the inverse Euclidean 
distance function. Our experiments show that 
measuring similarity using the Euclidean distance 
function tends to produce poor clustering results 
for high-dimensional data. Also, there is very 
little difference between the clustering results 
for cosine and correlation coefficient measures. 
When using cosine as the similarity measure, 
we were able to identify 36 clean clusters out of 
80 clusters, which is worse than the hyperclique 
pattern approach. 

Finally, we observed the following effects of 
the hyperclique-based clustering approach. If we 
set the minimum support threshold to 0% and 
h-confidence threshold to 20%, the discovered 
hyperclique patterns cover 861 items. Since there 
are 932 items in total, the hyperclique pattern min-
ing algorithm must have eliminated 71 items. We 
examine the distribution of these 71 items in the 
CLUTO k-means clustering results. We observe 

that 68 of the items are assigned to the wrong 
clusters by CLUTO. As a result, we believe that 
the items not covered by these hyperclique patterns 
are potentially noise items. We also observed that 
the quality of clusters for the hyperclique-based 
clustering approach tends to get better with the 
increase of h-confidence thresholds.

An Application of hyperclique 
Patterns for Identifying Protein 
functional Modules 

In this subsection, we describe an application of 
hyperclique patterns for identifying protein func-
tional modules—groups of proteins involved in 
common elementary biological function (Xiong 
et al., 2005). 

Figure 11 shows the subgraphs of the Gene 
Ontology (www.geneontology.org) corresponding 
to a hyperclique pattern {Cus1, Msl1, Prp3, Prp9, 
Sme1, Smx2, Smx3, Yhc1} identified from the 
TAP-MS protein complex data. Figure 11 (a) is the 
molecular function annotation of the proteins in 
the pattern. Note that all eight proteins from this 
pattern are annotated to the term RNA binding 
with p-value 4.97e-10. The p-value is calculated 
as the probability that n or more proteins would 
be assigned to that term if proteins from the entire 
genome are randomly assigned to that pattern. 
The smaller the p-value, the more significant 
the annotation. Among the pattern, 4 proteins 
{Prp3, Sme1, Smx2, Smx3} are annotated to a 
more specific term pre-mRNA splicing factor 

Figure 10. The average correlation of each pair 
of items for hyperclique and nonhyperclique 
patterns
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activity with p-value 2.33e-07. The annotation of 
these proteins confirms that each pattern form a 
module performing specific function. Figure 11 
(b) shows the biological process this pattern is 
involved. The proteins are annotated to the term 
nuclear mRNA splicing via spliceosome with p-
value 8.21-15, which is statistically significant.

conclusIon

In this chapter, we introduced the problem of 
mining hyperclique patterns in data sets with 
skewed support distribution. We also presented 
the concept of cross-support property and showed 
how this property can be used to avoid generating 
spurious patterns involving items from different 
support levels. Furthermore, an algorithm called 
hyperclique miner was developed. This algorithm 

utilizes cross-support and anti-monotone proper-
ties of h-confidence for the efficient discovery of 
hyperclique patterns. Finally, we demonstrated 
applications of hyperclique patterns for iden-
tifying protein functional modules as well as 
hyperclique-based item clustering.

There are several directions for future work 
on this topic. First, the hyperclique miner algo-
rithm presented in this chapter is based upon the 
Apriori algorithm. It will be useful to explore 
implementations based upon other algorithms for 
mining hyperclique patterns, such as TreeProjec-
tion (Agarwal, Aggarwals, & Prasad, 2000) and 
FP-growth (Han, Pei, & Yin, 2000). Second, 
it is valuable to investigate the cross-support 
property on some other measures of association. 
Third, the current hyperclique pattern-mining 
framework is designed for dealing with binary 
data. The extension of the hyperclique concept to 

Figure 11. The gene ontology annotations of pattern {Cus1, Msl1, Prp3, Prp9, Sme1, Smx2, Smx3, Yhc1}.  
Proteins are listed in square box. Significant nodes are labeled with the number of proteins annotated 
directly or indirectly to that term and the p-value for the term.

(a) shows function annotation of the pattern (b) shows subgraph of process annotation
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continuous-valued domains will be a challenging 
task. Finally, it is a very interesting direction to 
explore more efficient algorithms based on ap-
proximate clique partitioning algorithms (Feder 
& Motwani, 1995).
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1 It is available at http://www.almaden.ibm.
com/ software/quest/resources.

2 This is observed on Sun Ultra 10 work sta-
tion with a 440 MHz CPU and 128 Mbytes 
of memory.

3 When computing Pearson’s correlation coef-
ficient, the data mean is not subtracted.

4 http://www.cs.umn.edu/∼karypis/metis/
hmetis/index.html

5 Note that the numbers of items shown in Ta-
ble 4 for pumsb and pumsb* are somewhat 
different from the numbers reported in Zaki 
and Hsiao (2002), because we only consider 
item IDs for which the count is at least one. 
For example, although the minimum item 
ID in pumsb is 0 and the maximum item 
ID is 7116, there are only 2113 distinct item 
IDs that appear in the data set.

6 The data set is available at http://trec.nist.
gov.

7 In Han et al. (1998), they also applied a fit-
ness measure to eliminate partitions with 
bad quality and get 20 good clusters. Out 
of 20 good clusters, 16 clusters are clean.

8 http://www.cs.umn.edu/~karypis/cluto/in-
dex.html.



  ��

Chapter IV
Pattern Discovery in 

Biosequences:
From Simple to Complex

Simona Ester Rombo
Università della Calabria, Italy

Luigi Palopoli
Università della Calabria, Italy

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

In the last years, the information stored in biological datasets grew up exponentially, and new meth-
ods and tools have been proposed to interpret and retrieve useful information from such data. Most 
biological datasets contain biological sequences (e.g., DNA and protein sequences). Thus, it is more 
significant to have techniques available capable of mining patterns from such sequences to discover 
interesting information from them. For instance, singling out for common or similar subsequences in 
sets of biosequences is sensible as these are usually associated to similar biological functions expressed 
by the corresponding macromolecules. The aim of this chapter is to explain how pattern discovery 
can be applied to deal with such important biological problems, describing also a number of relevant 
techniques proposed in the literature. A simple formalization of the problem is given and specialized 
for each of the presented approaches. Such formalization should ease reading and understanding the 
illustrated material by providing a simple-to-follow roadmap scheme through the diverse methods for 
pattern extraction we are going to illustrate.
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IntroductIon

Biology has been one of the most important driv-
ing forces in science in the last century. Genome 
sequencing and the other important developments 
in molecular biology have been important con-
quests, but innumerable challenges still exist in 
this field, and it is reasonable to suppose that a very 
long quest lies ahead. On this subject, during an 
interview given in 1993, Donald Knuth stated, “Bi-
ology is so digital, and incredibly complicated, but 
incredibly useful. … I can’t be as confident about 
computer science as I can about biology. Biology 
easily has 500 years of exciting problems to work 
on.” In an evolving field such as this, continuously 
having new data to store and to analyze seems 
natural. Actually, the amount of available data is 
growing exponentially, and providing biologists 
with efficient tools to interpret data is imperative. 
Computer science can help in providing most ap-
propriate answers, and the development of new, 
interdisciplinary, sciences, such as bioinformatics, 
is an immediate consequence of that. The intrinsic 
difficulty in understanding biological processes 
is connected to the necessity of both analyzing 
enormous data sets and facing different sorts 
of specific problems. Therefore, techniques to 
extract and manage biological information have 
been developed and implemented in the last few 
years, for example, developing useful software 
interfaces allowing for the management of large 
amounts of data through easy human-machine 
interactions. Several application programs ac-
cessible through Internet are available (e.g., 
Altschul, Gish, Miller, Myers, & Lipman,1990; 
Altschul, Madden, Schaffer, Zhang, Anang, & 
Miller, 1997), and the widespread use of the Web 
represents a peculiar aspect of bioinformatics. 
Biological data-sets, such as GenBank (Benson, 
Mizrachi, Lipman, Ostell, & Wheeler, 2005), 
PDB (Berman, Bourne, & Westbrook, 2004), 
and Prosite (Hulo, Sigrist, Le Saux, Langendijk-
Genevaux, Bordoli, & Gattiker, 2004), featuring 
an impressive number of entries and containing 

data representing from portions to entire genomes 
or protein sequences corresponding to different 
organisms, are continuously queried online. In this 
scenario, the availability of very large amounts 
of data does not imply necessarily an enlarge-
ment of the attained knowledge, since such data 
need to be interpreted in order to extract useful 
information. Thus, the discovery of information 
implicitly encoded in biological datasets nowadays 
is assuming a prominent role. 

Most biological datasets contain DNA and 
protein sequences. DNA is a polymer, that is, a 
macromolecule made of small molecules joined 
together and called nucleotides. There are four 
nucleotides and the four bases can distinguish 
them: adenine (A), cytosine (C), guanine (G), 
and thymine (T). DNA is a central constituent 
of each living being, encoding the information 
required by an organism to function, and makes 
each organism transfer genetic information to 
its descendants. DNA can be viewed as a tem-
plate to produce additional (duplicate) DNA for 
the purposes of transmitting genetic material to 
descendants, but also to produce another kind of 
important macromolecule, that is, proteins. Pro-
teins are macromolecules made of units, called 
amino acids. The gene sequence inscribed in 
DNA is composed of triplets of nucleotides called 
codons, each coding for a single amino acid. There 
are twenty amino acids, and the sequence of the 
amino acids of a specific protein is determined 
by the sequence of the bases in the gene that 
encodes that protein. To briefly illustrate protein 
expression, let us recall that two main processes 
constitute the Central Dogma of biology: 

• Transcription = DNA → RNA 
• Translation = RNA → protein

During transcription, DNA serves as the template 
for the synthesis of RNA, thus the information 
encoded in DNA is transcribed into an RNA 
sequence. Translation consists of mapping the 
information encoded in the nucleotides of RNA 
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into a defined sequence of amino acids of the 
synthesized protein. Taken together, the two 
processes make up: 

• DNA → RNA → protein.

It is not difficult to understand that both DNA 
and proteins can be represented and stored by 
sequences of symbols corresponding, respec-
tively, to bases or amino acids. These biological 
sequences are usually named biosequences. While 
the analysis of biological sequences represents 
a fundamental step in those studies concerning 
the identification of genetic diseases and the de-
ciphering of biological mechanisms, extracting 
useful information from databases containing 
biosequences is a formidable task; the number of 
stored sequences is growing exponentially, and 
most of these sequences require interpretation 
before becoming useful for further studies. In 
particular, the discovery of regular expressions, 
that are, common subsequences, among sets of 
biosequences can often be related to important 
biological properties, for instance, the presence 
of similar biological functions in different macro-
molecules or the appearance of the same disease 
in different patients. In other words, regularities 
in sets of biosequences can model the presence of 
interesting common properties in the biological 
components associated with them.

The problem of pattern discovery might be 
formalized under several and more general keys 
(Pal, Mitra, & Pal, 2004), but we consider its ap-
plication in the context of biological sequences. 
According to (Brazma, Jonassen, Eidhammer, & 
Gilbert, 1998a), a possible way to analyze biose-
quences is grouping them in families of biologi-
cally (i.e., evolutionary, structurally, or function-
ally) related ones. For each family, the matter is 
searching groups of common features that can 
be purely expressed in terms of the sequences. 
Such “syntactic” features are named patterns. For 
example, we can consider a subsequence common 
to several biosequences or repeated several times 

in the same sequence to be a pattern. Common 
patterns in sets of biologically related sequences 
can be associated, for example, with the presence 
of conserved regions, usually corresponding to 
some important biological function of the macro-
molecules represented by such sequences. In this 
case, mining interesting patterns can be useful 
to predict properties of biological components. 
In other applications, finding frequent patterns 
repeated in sets of sequences can help in clas-
sifying such sequences. As an example, proteins 
can be grouped into families where those belong-
ing to the same family have common biological 
functions. Since proteins with similar functions 
have also similar structures (Lesk, 2004), it is 
possible to group in families also the correspond-
ing amino acid sequences. Thus, each family of 
sequences can be described by regular expres-
sions, corresponding to substrings repeated in 
all the sequences of the family and representing 
interesting patterns for that family. If a pattern 
previously found in a family of sequences is dis-
covered in a new sequence, then that sequence 
will (most probably) belong to that family. More 
in general, it might be interesting to mine complex 
structured patterns. If we refer to interesting pat-
terns as substrings frequently occurring in a set of 
strings, it can happen that, for example, a pair of 
substrings occurs in most sequences, appearing 
in each of those sequences always separated by 
the same number of symbols. In that case, the pair 
of substrings altogether are to be considered as a 
unique pattern, whose structure is characterized, 
intuitively, as two boxes linked by a gap. These 
are the kinds of patterns that we call structured 
and are interesting since, again, they are often 
associated with biological functions expressed 
in a living being. An example is the prokaryotic 
transcription regulation regions: the most fre-
quently observed prokaryotic promoter regions 
are in general composed of two parts positioned 
approximately 10 and 35 bases upstream from 
the transcription start. The biological reason for 
these particular positions is that the two parts are 
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recognized by the same protein. Relevant mining 
tasks for structured patterns can involve patterns 
with very complex structures, for instance consist-
ing of several boxes having different lengths, and 
separated by a varying number of symbols. These 
kinds of patterns can be particularly meaningful 
in those studies involving eukaryotic organisms, 
whose biological components and related process-
es are much more complex than the prokaryotes 
ones. Also, allowing a limited number of “errors” 
(insertions, deletions or symbol substitutions) in 
repeated patterns is biologically relevant, since 
(relatively limited) sequence modifications are 
produced through the evolution of species and 
individuals. Proteins are still a good example: 
many protein functional domains are associated 
with the same function even if they are different 
in some of the amino acids of the corresponding 
sequences.

Informally, we can say that pattern discovery 
consists in developing methods and tools to find 
interesting patterns that are unknown a priori 
in a sequence or in a given set of sequences. The 
concept of interestingness deserves some atten-
tion, since a pattern can be considered interest-
ing according to different criteria, such as if it is 
frequent, unexpected, or contextually under- or 
over- represented. Interesting patterns are also 
called motifs. In several problems, a pattern is 
considered interesting if it appears at least q times, 
where q represents a quorum value associated 
with the problem. Moreover, in some biological 
problems, interesting patterns present complex 
structures, and many constraints are to be con-
sidered in the discovery process. The aim here is 
to consider the problem of discovering interesting 
patterns in biosequences, presenting an overview 
of the main methods presented in the literature 
and their applications, both consolidated or just 
developed in the past few years. In the following, 
we present a general formalization of the prob-
lem of pattern discovery, and then particularize 
it during exposition to some specific examined 
cases, in such a way that the reader will be able 

to easily categorize the guiding thread of the 
different described approaches, thus providing 
an easy-to-use reading key of differences and 
similarities characterizing them.

The first step in our narration is giving the 
means to fully understand what is pattern dis-
covery and how it can be applied to problems 
involving sets of sequences. To achieve that, we 
first introduce and explain some basic notions 
derived from string matching; then we shall 
present our formalization of the problem of pat-
tern discovery applied to biosequences. Keeping 
in mind this formalization, the next step will 
be to go through a collection of selected works 
developed and consolidated in the last few years. 
Finally, we shall point out the emerging directions 
in the field.

The chapter is organized as follows: section 2 
is devoted to providing some guidelines on sur-
veys and collections of works already presented 
in the literature on the topic of interest, and to 
introducing some preliminary definitions useful 
to the illustration; section 3 is the central part 
of the chapter, in which we provide a simple yet 
general formalization of the problem of pattern 
discovery in biosequences and describe a number 
of approaches presented in the literature; in sec-
tion 4 we underline some emergent approaches 
and discuss about some interesting future trends; 
finally, in section 5 we draw our conclusions.

bAckGround

The variety of biological data, their often high-
dimensional nature, the enormous amount of 
information to manage necessitated approaching 
several problems in this field by applying data 
mining and knowledge discovery consolidated 
methods, suitably adapted to solve biological prob-
lems. The application of traditional data mining 
approaches to bioinformatics is not straightfor-
ward: differently from in other application fields, 
such as business and finance, biological data are 



  ��

Pattern Discovery in Biosequences

characterized by both the absence of explicit fea-
tures and the presence of numerous exceptions. 
Thus, inferring knowledge by applying classical 
data mining methods is highly nontrivial, and ac-
curate studies are necessary to attain significant 
results. In (Liu & Wong, 2003), a number of data 
mining tools for analyzing biological sequence 
data are discussed. In particular, a general meth-
odology is described based on: (a) the generation 
of candidate features from the sequences, where 
different types of features based on k-grams are 
presented; (b) the selection of relevant features 
from the candidates, where signal-to-noise, t-sta-
tistics, entropy measures and correlation-based 
feature selection methods are discussed; (c) the 
integration of the selected features to build a sys-
tem to recognize specific properties in sequence 
data, using machine learning methods. The em-
phasis of the paper is on the application of this 
methodology to recognize translation initiation 
sites (TIS), even if a significant list of other data 
mining approaches for biomedical applications 
are reported. In particular, different classification 
techniques successful in the biomedical context 
are revised, including decision tree based ap-
proaches, Bayesian classifiers, artificial neural 
networks and support vector machines.

Data mining approaches have been proposed to 
classify biological data. To cite a recent example, 
in Elloumi and Maddouri (2005) a method based 
on voting strategies and called Disclass is pre-
sented  to do classification of nucleic sequences. 
The approach has been applied to the analysis of 
toll-like receptors (TLR) macromolecules, to the 
discrimination between exon and intron regions in 
DNA macromolecules and to the identification of 
junction regions in DNA macromolecules. Besides 
classification, the discovery of knowledge by pat-
tern extraction has been also successfully applied 
in the biological context, and this chapter focuses 
just on this subject. In general, given a database 
including a number of records, patterns can be 
simply defined considering common features 
characterizing related records. As already pointed 

out, in biological databases the records are often 
biosequences, and this chapter focuses on mining 
patterns in biosequences. Anyway, before starting 
with the main part of our narration, it is mandatory 
to point out that also other kinds of patterns may 
be usefully considered in bioinformatics contexts. 
As an example, one of the current trends is the 
study of biological networks, useful to represent 
interactions among molecules, such as protein-in-
teraction, protein-DNA interaction, and metabolic 
reactions, or functional relationships derived from 
genomic data (e.g., microarray data). Biological 
networks may be modelled by using graphs and 
computational methods can be used to mine graph 
patterns that are similar subgraphs common to 
different graphs. Graph patterns are useful, for 
example, to discover common biological modules 
in biological multiple networks, or to search for 
similarities among networks modelling different 
kinds of interactions among molecules. In Hu, 
Yan, Huang, Han, and  Zhou (2005) an algorithm 
for efficiently mining graph patterns is presented 
and applied to biological networks derived from 
microarray datasets, discovering numerous 
functionally homogenous clusters and making 
functional predictions for 169 uncharacterized 
yeast genes. Other interesting and recent refer-
ences about this subject are found in Koyuturk, 
Kim, Subramaniam, Szpankowski, and Grama 
(2006) and Berg and Lassig (2004), describing 
approaches to discover graph patterns in biological 
networks. In particular, in Koyuturk et al.  (2006), 
an algorithm for detecting frequently occurring 
patterns and modules in biological networks is 
proposed, using a graph simplification technique 
based on ortholog contraction, useful to make the 
problem computationally tractable and scalable to 
many networks. The authors apply their method to 
extract frequently occurring patterns in metabolic 
pathways and protein interaction networks from 
commonly used biological databases. In Berg and 
Lassig (2004) topological motifs, that is, graph 
patterns occurring repeatedly at different posi-
tions in the network, are considered. The authors 
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establish a statistical model for the occurrence 
of such motifs, from which they derive a scoring 
function for their statistical significance. Based 
on this scoring function, they develop an algo-
rithm for searching for topological motifs; the 
procedure is called graph alignment, because of 
its analogies to sequence alignment techniques. 
The algorithm is applied to the gene regulation 
network of Escherichia coli.

At this point, we have provided some reviews of 
possible data mining and mining patterns applica-
tions in the biological contexts, and we are ready 
to focus on the main subject of this chapter, that 
is, mining patterns in biosequences. A survey on 
approaches and algorithms used for the automatic 
discovery of patterns in biosequences is presented 
in Brazma et al. (1998a). In that work, a formula-
tion of the problem of automatically discovering 
patterns from a set of sequences is given, where 
patterns with the expressive power in the class 
of regular languages are considered among those 
frequently used in molecular bioinformatics. That 
paper focuses on families, which are, groups of 
biologically related sequences, and two different 
but related problems of learning family descrip-
tions thereof are described. The first problem 
considered is how to find a classifier function for 
a family of biosequences; this is a function that 
takes a sequence as an argument, and returns 
true over the members of the family, and false 
over nonmembers. The second problem is how 
to extract a description of conserved features in 
(i.e., characterizing) the family, expressed by a 
conservation function. Several solution spaces 
are discussed, illustrating different ways of de-
fining such functions w.r.t. different biological 
problems, and the issue of ranking the solution 
space of discovered patterns is also discussed. 
Then, an in-depth review of algorithms used to 
find classification or conservation functions for 
sets of biosequences is given. The perspective put 
forward in Brazma et al. (1998a) highlights how 
the problem of pattern discovery in biosequences 
can be related to problems studied in the field of 

machine learning, which is certainly interesting. 
However, here we deal with a different mat-
ter, focusing on the more structural properties 
characterizing sequences and their repetitions. 
Also, we point out approaches developed in the 
last few years to discover new classes of patterns 
having complex structures, whose identification is 
important in several biological problems, such as 
the individuation of regulatory regions of prokary-
otes organisms and similar issues. In  Rigoutsos,  
Floratos, Parida, Gao, and  Platt (2000), a detailed 
discussion of several applications of pattern dis-
covery in computational biology is reported. The 
authors present the problem of pattern discovery 
in terms of determining interesting combinations 
of events, which are contained in a database D. 
They observe that one of the possible ways to 
recast the notion of what is interesting in terms of 
the number of times some combination of events 
appears. Thus, given an interestingness threshold 
k, a combination of events is to be considered in-
teresting if and only if it appears at least k times in 
the processed input database. The authors present 
a number of algorithmic approaches related to 
this problem, and several explored applications 
of pattern discovery in the context of biological 
problems. For more on this, the reader is referred 
also to  Vilo (2002) and Wang, Shapiro, and Sha-
sha (1999). In the remaining part of this section, 
we shall focus on introducing some preliminary 
notions useful in the foregoing.

String, Suffix, and Don’t Care

As already stated, one of the most common ways 
to model biological components such as DNA and 
proteins is by sequences of symbols, where the 
set of symbols exploited for the representation 
changes according to both the specific components 
and the specific problems to analyze. Some basic 
concepts are recalled next.

Given a finite set of characters denoted by 
Σ and called alphabet, a string s of size (a.k.a., 
length) n over Σ is an ordered list of characters 
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s=a1a2 … an such that ai∈Σ, for each i, 1≤ i ≤ n. 
The length n of s is denoted by |s|. In the follow-
ing, the terms “string” and “sequence” are used 
interchangeably. By a little abuse of notation, the 
cardinality of Σ is denoted by |Σ|. A substring of 
s, starting from position i and ending at position 
j, is a list of consecutive characters aiai+1... aj of 
s and is denoted by s[i…j], where 1≤ i ≤ j ≤ n. The 
suffix sk of a string s is the substring s[k…n] of s.

Example 1: Consider the alphabet Σ={a, b}. The 
size of Σ is |Σ|=2. Then s=abbbababba is a string 
of length |s|=10 over Σ. The substring s[2…5] of s 
is bbba. The suffix s7 of s is abba.

Given two strings s’ and s’’ of size n’ and n’’, 
respectively, with n’’≤ n’, we say that s’’ occurs in 
s’ if s’[i…j] = s’’ for some indexes i and j, 1≤ i<j≤ n’ 
such that n’’=j-i+1. We also say that s’ matches s’’. 
Each substring of s’ with this property represents 
an exact occurrence or, simply, an occurrence 
of s’’ in s’.

Example 2: Consider the strings s’=AKKTATAK 
and s’’=KTAT on the alphabet Σ={A, K, T}. Ob-
serve that, for i=3 and j=6, s’[i…j] = s’’. Thus, s’[3…6] 
represents an occurrence of s’’ in s’.

In addition to the characters from Σ, called solid 
characters, we introduce a new special character 
denoted by ‘·’ and called a don’t care symbol. 
The don’t care is a symbol not occurring in Σ and 
matching all the symbols in Σ. As an example, 
consider the strings s’=bcabc and s’’=baabc. Then, 
both of them match the string s=b ∙ abc. 

distance between strings and 
Approximate occurrences

It is often useful to define some notion of dis-
tance between two strings. The most common 
notions found in the literature are those of the 
Hamming and the Levenshtein distances, which 
are recalled next. 

Let s’ and s’’ be two strings over the same al-
phabet Σ. The Hamming distance between s’ and 

s’’ is the minimum number of symbol substitutions 
to be applied on s’ to obtain s’’. The Levenshtein 
distance between s’ and s’’ is the minimum num-
ber of edit operations (i.e., symbol substitutions, 
insertions, and deletions) to be applied on s’ to 
obtain s’’. For instance, ‘ACGTAG’ and ‘ABGATG’ 
have Hamming distance equal to 3, whereas the 
Levenshtein distance between ‘MISSPELL’ and 
‘MISTELL’ is equal to 2.

Given a maximum (e.g., Hamming or Lev-
enshtein) allowed distance e (also called error), 
each substring of s’ at a distance d ≤ e from the 
string s’’ represents an approximate occurrence 
of s’’ in s’ w.r.t. e (also called an e-occurrence in 
the following). 

Example 3: Consider the strings s’=aaabcaaaad 
and s’’=aadbaa, and suppose that the maximum 
number of allowed errors is e=2. Thus, with ref-
erence to the Hamming distance, the substring 
s’[2…7]=aabcaa is an approximate occurrence of 
s’’ in s’.

data structures: 
tries and Suffix Trees

We report next a brief description of some data 
structures commonly adopted to store and ma-
nipulate strings. More detailed information can 
be found in Apostolico (1985), Apostolico (2000), 
and Gusfield (1997).

The first data structure we consider is the 
trie. A trie, introduced in  Fredkin (1960), is an 
ordered tree structure. Each edge of the tree has 
a label representing a symbol. Any two edges 
out of the same node have distinct labels. Each 
node is associated with a string. Concatenating 
all the symbols in the path from the root to a node 
n, the string corresponding to n is obtained (the 
empty string for the root). All the descendants of 
the same node n are associated with strings hav-
ing a common prefix, represented by the string 
corresponding to n. Figure 1 shows an example 
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of a trie, where strings associated with nodes are 
shown in square brackets.

A trie can be also considered in a compressed 
form, obtained by merging single child nodes with 
their parents. This kind of trie is known in the 
literature as PATRICIA trie (Morrison, 1968), from 
the acronym of Practical Algorithm To Retrieve 
Information Coded In Alphanumeric. The term 
compact trie is often used to indicate a trie in the 
compressed form.

Given a string s of n characters on the alphabet 
Σ, a suffix tree T associated to s can be defined as 
a trie containing all the n suffixes of s. In a suffix 
tree, for each leaf i of T, the concatenation of the 
edge labels on the path from the root to that leaf 
will spell out the suffix si of s. Moreover, for any 
two suffixes si and sj of s, their longest common 
prefix share the same subpath in T. Also for suffix 
trees compact forms can be defined, which can be 
built in O(n) both in time and space (Apostolico, 
Iliopoulos, Landau, Schieber, & Vishkin, 1988; 
Apostolico & Crochemore, 2000; McCreight, 
1976; Ukkonen, 1995), assuming as constant the 
time needed to traverse a node. Figure 2 shows 
a suffix tree.

In some applications, it can be useful to store in 
a suffix tree all the suffixes of a set of strings:  the 
resulting tree is called generalized suffix tree.

forMAlIzAtIon And 
APProAches

As already stated, the aim of this chapter is to 
provide the basic notions for understanding the 
different facets that the problem of mining patterns 
in biosequences can assume, providing also an 
overview of the main classes of approaches pro-
posed in the last years and related references. As 
already stated, many biological problems involve 
the task of finding common substrings in sets of 
biosequences, representing common features that 
usually correspond to interesting patterns (mo-
tifs). According to the particular problem under 
examination, the criteria to establish whether a 
pattern is interesting change, and motifs may have 
from simple to more complex structure. Further-
more, also the choice of searching for exact or 
approximate repetitions depends on the analyzed 
biological problem. Thus, specifying constraints 
on both the selection criterion and the structure 

Figure 1. An example of trie storing the strings: to, tea, te, ten, hi, he, her
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of the patterns, the problem can be particularized 
to different application contexts.

In the following we illustrate a simple for-
malization of the problem of pattern discovery 
in biosequences, with the aim of facilitating the 
reading, relieving it of different notations, and 
then analyzing a selection of approaches and ap-
plications developed in this field. We would like 
to stress here that this analysis is not exhaustive 
but, rather, aims at pushing the reader towards 
further reading.

A formalization of the Problem

Before formalizing the problem of pattern dis-
covery in biosequences, we need to introduce 
some definitions concerning structural properties 
of sets of strings. Indeed, we shall be interested 
in defining the problem of mining patterns that 
may have a significantly complex structure and 
possibly allowing errors or string repetitions. A 
possible way to go is to define the concept of ex-

traction constraints of a set of strings on a given 
sequence, in order to model the way in which the 
different portions of the pattern succeed to each 
other while occurring in an input sequence.

Definition	1	(Extraction	Constraints): Given 
a string z on the alphabet Σ, the extraction con-
straints Ec can be defined as a seven-tuple of 
integers <n, lmin, lmax, dmin, dmax, emin, emax>, where  
1≤ n, lmin, lmax ≤ |z| and emin, emax ≥ 0. In particular, 
n represents a minimum number of substrings 
(boxes) over the extended alphabet ΣU{∙} to be 
extracted from z;  lmin and lmax denote the mini-
mum and maximum allowed length for boxes, 
respectively; occurrences of boxes in z may be 
approximated w.r.t. an error e such that emin ≤ e 
≤ emax; finally, the distance separating a generic 
pair of consecutive boxes must be less than dmax 
and greater than dmin. 

Definition	2	(Satisfaction): Given a string z over 
the alphabet Σ, an ordered set of strings P over 

Figure 2. An example of suffix tree for the string bbbabba
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the alphabet ΣU{∙}, and the extraction constraints 
Ec = <n, lmin, lmax, dmin, dmax, emin, emax>, P satisfies 
Ec on z iff:

1. The cardinality |P| of P is s.t. then |P| ≥ n
2. For each string pi in P, with 1≤ i ≤|P|, lmin ≤ 

|pi| ≤ lmax
3. For 1≤ i <|P|-1, let di be the number of sym-

bols in z separating pi and pi+1, then dmin ≤ di 
≤ dmax

4. If ei is the number of errors in the considered 
approximate occurrence of pi in z (according 
to the given distance measure), then emin ≤ 
ei ≤ emax

E x a m p l e  4 :  C o n s i d e r  t h e  s t r i n g 
z=abbaaabababbbaba on the alphabet Σ={a, 
b}, the set of strings P=<ab·a, b··a, b·b> and the 
extraction constraints Ec=<2, 3, 4, 1, 2, 1, 2>. It is 
not difficult to see that P satisfies Ec on z, by virtue 
of the substrings z[1…4], z[7…10] and z[13…15] of z.

Definition	3	(Pattern	and	Box):	 Given a string z 
over the alphabet Σ and the extraction constraints 
Ec = <n, lmin, lmax, dmin, dmax, emin, emax>, all the 
ordered sets P of strings over the alphabet ΣU{∙} 
satisfying Ec on z are patterns of z. For each such 
a P, its position is individuated by the leftmost 
symbol of the leftmost string of P in z. All the 
strings included in a pattern P are boxes of P, 
thus a pattern is an ordered set of boxes satisfying 
some extraction constraints on an input string. 
The pattern P will be denoted by P=<b1,…,bk> 
where k is the number of its boxes.

Example 4 (cont’d.) The strings in P are the 
boxes of the pattern P=<ab·a, b··a, b·b> of z.

Also for patterns it is possible to define the 
concept of approximate occurrence, meaning 
that at least one of its boxes occurs in the string 
in input, not exactly, but with some errors. In 
the same way, a pattern satisfies some given 
extraction constraints on a string if the set of its 
boxes does. 

The given formalization includes a large set 
of possible specializations. For instance, con-
sidering the extraction constraints in which the 
number of boxes is equal to one and, fixed the 
minimum and maximum lengths, all the other 
parameters are zero, the correspondent patterns 
to discover are strings with exact occurrences 
in a given input string. In some cases it can also 
be useful not to specify all the parameters of the 
extraction constraints, so as to enlarge the class 
of patterns considered. In this case, we refer to 
extended extraction constraints, where at least one 
of the parameters is not specified and denoted by 
‘-’. As an example, Ec= <n, lmin, lmax, dmin, -, emin, 
emax> denote extraction constraints in which the 
upper bound for the maximum distance between 
two adjacent boxes is not specified. Obviously, 
at least one of the parameters has to be in any 
case specified.

In many contexts the aim is to mine patterns 
from a set of biosequences, where the structure 
of the patterns to analyze can change according 
to the different analyzed cases, from the simplest 
to the most complicated ones. The problem is 
therefore to find all the patterns occurring in the 
given biosequences that can be considered inter-
esting according to some predefined criteria. We 
point out that the simplest criteria to define the 
concept of interesting corresponds to searching 
for patterns occurring more than a given number 
of times in the strings in input. 

For convention, if a pattern occurs more than 
once on one of the input strings, only the leftmost 
occurrence is considered. Indeed, usually, the 
reason to search for repeated patterns in sets of 
biosequences is that such patterns can represent 
biological features that are common to a relevant 
number of sequences; therefore, further repeti-
tions in the same string are not significant. Thus, 
the number of occurrences of a pattern in a set 
of strings is taken to be the number of strings in 
which such a pattern occurs at least once. 
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Definition	4	(List	of	Occurrences): Given a set 
S of m strings, a pattern P and some extraction 
constraints Ec, we associate to P a list LS,P,Ec of 
couples of integer values, each indicating a string 
of S and the position in such string where the 
pattern occurs; this list is the list of occurrences 
of the pattern.

Example 5: Consider the set of string S={abbaab, 
aabba, abbbbb, abababbab, babaab}, the pattern 
P=<ab·a> and the extraction constraints Ec=<1, 2, 
4, 0, 0, 0, 1>. Observe that P satisfies Ec, having, 
for example, an occurrence in the first string of S. 
Then the list is LS,P,Ec ={(1,1), (2,2), (4,5), (5,2)}.

The only patterns to be considered in the 
search are the ones occurring in at least one of 
the strings in input. 

Definition	5	(Satisfaction	of	Some	Extraction	
Constraints by a Pattern P on a Set of Strings): 
Given a set S of m strings, a pattern P and some 
extraction constraints Ec, P satisfies Ec on S iff 
there is at least one string in S where P satisfies 
Ec.

Now that the reader should have gained a clear 
vision of several basic concepts, we can continue 
our discussion by presenting a formalization of 
the problem of pattern discovery, which aims at 
including most of its possible instantiations within 
the biological contexts.

the Problem of Pattern discovery

Given a set S of m strings, each representing a 
biosequence and denoted by si, with 1≤ i ≤ m, some 
extraction constraints Ec and a real value q, the 
problem of pattern discovery consists of extracting 
all the triplets <p, L, fq>, where p is a pattern, L its 
list of occurrences and fq a parameter associated 
with a value of interest for p, such that:

1. p satisfies Ec on S
2. fq ≥ q

Example 6: Consider the following instance of 
the problem of pattern discovery:

 S={babbaab, aabbaa, aabbbbaa, abaaab-
bab, babaab}

 Ec = <1, 3, 3, 0, 0, 0, 0>
 q=4

Suppose that fq represents the frequence of occur-
rences of patterns. The only two patterns that can 
be considered interesting are p1=<abb>, occurring 
4 times and having a list of occurrences L1={(1,2), 
(2,2), (3,2), (4,5)},  and p2=<baa>, occurring 5 
times and having a list of occurrences L2={(1,4), 
(2,4), (3,6), (4,2), (5,3)}. The output is {<p1, L1, 
4>, <p2, L2, 5>}.

The given formalization of the problem of 
pattern discovery can be useful in analyzing 
the approaches developed in the last few years 
towards solving various versions of the problem 
of mining patterns in biosequences. The next sec-
tion is devoted to focusing on different ways in 
which pattern discovery can be applied to solve 
biological problems. 

An overview of the Proposed 
Approaches and Applications

We are in the central part of our discussion. 
In the following, a collection of methods and 
techniques exploiting pattern discovery to solve 
biological problems is presented. For all pre-
sented approaches, a possible specialization of 
the general problem of pattern discovery to the 
specific analyzed case is reported, in order to 
better focus on the different facets that mining 
patterns can assume in biological contexts. Notice 
that the expression of a specific pattern discovery 
task within our formal framework will not be, in 
general, unique. For simplicity, in what follows, 
only one of these specializations is reported. 
Furthermore, in some few cases, for example, 
Jonassen, Collins, and Higgins (1995), where the 
considered pattern classes are rather specific, our 
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formalization turns out to be somehow weaker 
than needed in order for those approaches to be 
exactly captured. Indeed, as specified below, to 
rigorously encode those cases by our formaliza-
tion scheme, our extraction constraints should be 
generalized by considering arrays of parameters 
values in the place of simple values thereof. How-
ever, our objective with the proposed formalization 
is to provide an easy-to-follow roadmap scheme 
through the diverse approaches to pattern extrac-
tion that have been proposed recently, rather than 
a completely general scheme precisely accounting 
for all of them. In this respect, a more complex 
extraction constraint scheme is arguably less 
suitable to serve our declared purpose than the 
one we have chosen to adopt. 

RNA and proteins are encoded as sequences 
that can be also used to predict structures and func-
tions of the corresponding macromolecules. In 
particular, the prediction of biological properties 
of proteins from their amino acid sequences can 
be made easier by grouping proteins in families, 
where the members of a family have similar struc-
tures. Indeed, if the structures of some members 
of a family are known, then the structures of the 
other members, for which only the sequences 
are known, can be in some cases obtained in an 
easier way. Protein family databases (Bateman, 
Coin, Durbin, Finn, Hollich, & Griffiths-Jones, 
2004; Hulo et al., 2004) are available online, and 
an interesting task is finding common features in 
a family of functionally related proteins, since 
this implies that such features are important for 
the biological functions of that family. In some 
cases, this problem can be dealt with by aligning 
the sequences and looking for any conserved (i.e., 
common) blocks amongst aligned sequences; how-
ever, the sequences are not always easy to align 
since the conserved regions may be very short 
or repeated within the proteins. In this context, 
pattern discovery can be a successful solution to 
individuate common sequence patterns or mo-
tifs in groups of protein sequences that possibly 
reflect the presence of common ancestry or the 

conservative evolutionary pressure to maintain 
functionally important parts of the protein. 

In Jonassen et al. (1995) a program, called 
Pratt, is presented that, given a set of unaligned 
protein sequences, which are sequences that have 
not been processed by any alignment algorithm to 
find the subsequences that better match, finds what 
the authors call patterns by matching a minimum 
number of these sequences. Note that this notion 
of a pattern is slightly different from the one pre-
sented here, as will be apparent below. 

The user specifies the minimum number of 
sequences to be matched and the class of pattern to 
be searched for. Specifically, patterns that can be 
discovered by Pratt can be written in the form:

p=A1-x(i1, j1)-A2-x(i2, j2)-....Ap-1-x(ip-1, jp-1)-Ap 

where A1, …, Ap are nonempty sets of amino acids, 
also called components of the pattern, and i1 ≤ j1, i2 
≤ j2, . . . , ip-1 ≤ jp-1 are integers. Each Ak can either 
specify one amino acid, for example, C, or one 
out of a set of amino acids, for example [ILVF]; a 
pattern component Ak is an identity component if 
it specifies exactly one amino acid (for instance C 
or L), or an ambiguous component if it specifies 
more than one (for instance [ILVF] or [FWY]). 
The syntactic x(ik,jk) specifies a wildcard region in 
the pattern made of from ik to jk arbitrary amino 
acids. A wildcard region x(ik,jk) is flexible if jk is 
bigger than ik (for example x(2,3)). If jk is equal 
to ik, forexample, x(2,2) which can be written as 
x(2), then the wildcard region is fixed. Biologi-
cally, considering variable spaces among regions 
is important. The purpose of Jonassen (1995) is to 
compile, from a set of protein sequences in input, 
a list of the most significant patterns (according to 
a nonstatistical significance measure) found to be 
matching at least for the user-defined minimum 
number of sequences. As already mentioned, our 
formalization does not allow to precisely capture 
such an extraction semantics. However, such pat-
terns can be approximately encoded within our 
framework as follows. Given a set of strings S, 
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the extraction constraints Ec= <p, 1, 1, min (ik), 
max(jk), 0, [Ak]max − 1>, for 1≤ k≤ p, and a value fq, 
Pratt returns in output those patterns satisfying 
Ec and such that fq is greater than a fixed thresh-
old (we remind the reader that fq is, in general, a 
function value according to which it is possible 
to discern whether a pattern is interesting for 
the specific analyzed problem). In particular, the 
number of components in a pattern is p, that is, 
the number of identity or ambiguous components; 
their length is fixed to be equal to 1; the distances 
between boxes express, in this case, the flexibility 
of the wildcard regions, thus they are bounded, 
respectively, by the minimum of the iks and the 
maximum of the jks; the number of errors might 
be zero, if all components are identity ones, or it 
is bounded by the maximum number of amino 
acids that can be specified in the ambiguous 
component (denoted by [Ak]max) minus one (if the 
component Ak is ambiguous, then it specifies at 
least two different amino acids, thus the match-
ing error is at least one); finally, fq is a function 
of both the number of matched sequences and the 
pattern itself. Note that, formalizing the problem 
in this way, the class of patterns satisfying the 
extraction constrains might be larger than the 
one extracted by Jonassen et al. (1995). The basic 
algorithm in Pratt uses the block data structure 
when exploring the space of a restricted class of 
patterns. This is a variation of the algorithm in 
Neuwald and Green (1994), developed in order to 
allow for more general ambiguous positions and 
for variable length wildcard regions. The authors 
show that Pratt is able to retrieve known motifs for 
PROSITE families and has been also successfully 
applied to several known protein families. 

Let us now to turn our attention to so-called 
tandem repeats. DNA can be subject to differ-
ent mutational events. Tandem repeats occur 
when a sequence of two or more nucleotides is 
converted in two or more copies, each following 
contiguously the preceding one. As an example, 
the sequence TCGGCGGCGGA presents three 
copies of the triplet CGG: such a sequence, ob-

tained by duplication of CGG in three copies, 
is a tandem repeat. Moreover, since during the 
copying process further mutations can occur, 
also approximate copies of nucleotide sequences 
have to be considered. In other words, a tandem 
repeat is a string that involves consecutive (either 
exact or approximate) occurrences of a substring. 
Therefore, a tandem repeat is a pattern satisfying 
the extraction constraints Ec= <2, 3, 3, 0, 0, 0, 
emax> on a DNA sequence. Researches on human 
genome proved that tandem repeats can be useful 
in human genetic analysis, for example they can 
be applied directly to problems of human identi-
fication, including parenthood testing (Jeffreys, 
Wilson, & Thein, 1985a; Jeffreys, Wilson, & 
Thein, 1985b). Furthermore, tandem repeats can 
be associated with human diseases caused by 
triplet repeat expansion (Benson, 1997; Kolpakov, 
Bana & Kucherov, 2003), such as Huntington 
Chorea or Myotonic Dystrophy. In Benson (1999) 
an algorithm is proposed to find tandem repeats in 
DNA sequences without the necessity to specify 
either the pattern or pattern size. The algorithm 
is based on the detection of k-tuple matches, and 
uses a probabilistic model of tandem repeats and 
a collection of statistical criteria based on that 
model. The program presented in Benson (1999) 
has both a detection and an analysis components. 
The detection component uses a set of statistically 
based criteria to find candidate tandem repeats, 
the analysis component attempts to produce an 
alignment for each candidate and, if successful, 
gathers a number of statistics about the alignment 
and the nucleotide sequence. The program was 
tested on human genes obtained from GenBank. 
In Hauth and Joseph (2002) an algorithm to iden-
tify two important complex pattern structures, 
that are, variable length tandem repeats (VLTRs) 
and multi-period tandem repeats (MPTRs), is 
presented, and three application examples are 
given. A VLTR is a simple nested tandem repeat 
in which the copy number for some pattern is vari-
able rather than constant, an MPTR is formed by 
the nested concatenation of two or more similar 
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patterns. The repeats considered in  Hauth and 
Joseph (2002) contain substitutions, insertions 
and deletions, and the three reported examples 
are a bovine sequence containing a highly con-
served VLTR, a human sequence containing an 
MPTR region and an analysis of yeast chromo-
some I, in which there are similar regions. The 
main tasks of the algorithm of Hauth and Joseph 
(2002) refer to both locating and characterizing 
regions, similarly to  Benson (1999), in that they 
analyze k-length substrings in a DNA sequence 
by finding recurring distances between identi-
cal substrings. The difference is that  Hauth and 
Joseph (2002) does not use any statistical models 
to locate interesting periods, but rather a filter 
coupled with techniques to data mine sequence 
differences. The work presented in Gusfield and 
Stoye (2004) focuses on the problem of extract-
ing a vocabulary of tandem repeats of a string, 
where a vocabulary is defined as a list reporting 
the start location and the length of different 
tandem repeat types. The definition of tandem 
repeats given in  Gusfield and Stoye (2004) is a 
bit more general than the previous one reported 
here, since they consider a tandem repeat to be a 
string αα, where α is a non-empty string. Thus, 
two tandem repeats αα and α’α’ are of different 
type iff α≠α’. The authors propose a linear-time 
and space algorithm to find the vocabulary of an 
input string, based on a three-phase approach. In 
particular, during Phase I a subset of the occur-
rences of tandem repeats is found, then Phase II 
finds the end locations in the suffix tree of the 
input string for some of the tandem repeat types. 
Finally, Phase III traverses parts of the suffix tree 
from the endpoints found in phase II, to obtain 
the complete vocabulary of tandem repeats. In 
other words, the suffix tree of the input string is 
decorated with the endpoint of each tandem repeat 
in its vocabulary, compactly representing all the 
different tandem repeat types and the locations 
where they occur in the input string.

Other important applications of pattern discov-
ery are in gene regulation. In fact, the regulation 

mechanisms of gene expression are not yet fully 
understood, and the identification of upstream 
regulatory sequences is not a simple task. In par-
ticular, the controls acting on gene expression (i.e., 
the ability of a gene to produce a biologically active 
protein) are much more complex in eukaryotes 
(complex organisms, such as, mammals) than in 
prokaryotes organisms (unicellular organisms), 
due to the presence of nuclear membranes prevent-
ing the two phases of transcription and transla-
tion to occur simultaneously as in prokaryotes. 
Proteins that activate or repress transcription by 
binding to short, specific DNA sequences is often 
regulated by gene expression. Such cis-acting sites 
are usually located close to the promoter (RNA 
polymerase binding site) for the regulated gene. 
Regulatory regions are thus regions associated 
with a gene to which proteins bind, regulating 
that gene expression. Promoter regions in DNA 
sequences are not always expressed exactly by 
the same sequence, thus their identification can 
be difficult. Although promoter regions vary, it is 
usually possible to find a DNA sequence (called 
the consensus sequence) encoding common sub-
sequences thereof. For example, the consensus 
in the bacterium Escherichia coli, based on the 
study of 263 promoters, is TTGACA followed by 
17 uncorrelated base pairs, followed by TATAAT, 
with the latter, called TATA box, located about 
10 bases upstream of the transcription start site. 
None of the 263 promoter regions exactly match 
the above consensus sequence. Eukaryotic is 
more complicated than prokaryotic transcription 
regulation, since promoter sequences contain one 
or two boxes recognized by the same protein, but 
there may be more regulatory sites, appearing 
sometimes repeated, which are recognized by 
distinct proteins that interact with one another. In 
this context, an interesting problem is the discov-
ery of motifs in the upstream regions shared by a 
given group of genes having common biological 
function or regulation. In  Brazma (1998b) a se-
quence pattern discovery algorithm is described 
that searches exhaustively for a priori unknown 
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regular expression patterns that are over-repre-
sented in a given set of sequences. The algorithm 
was applied to discovery patterns both in the 
complete set of sequences taken upstream of the 
putative yeast genes and in the regions upstream 
of the genes with similar expression profiles. The 
algorithm is able to discover various subclasses 
of regular expression type patterns of unlimited 
length common to as few as ten sequences from 
thousands. In particular, it was able to predict 
regulatory elements from gene upstream regions 
in the yeast Saccharomyces cerevisiae. Errors are 
allowed in the search, represented by wildcard 
positions. According to our notation, the problem 
dealt with in Brazma et al. (1998b) consists in dis-
covering those patterns satisfying the extraction 
constraints Ec= <2, 1, -, 0, dmax, 0, emax>, and such 
that the concept of interest is related, in this case, 
to the number of input sequences where the pattern 
P occurs and also to the specific positions where 
the errors appear. Those are, in some cases, fixed 
in the box included in the pattern and restricted 
to subsets of the alphabet in input (they call such 
sets of possible symbol substitutions character 
groups, referring to wildcards of fixed lengths). 
The paper by Jensen and Knudsen (2000) also 
deserves mentioning. It proposes two word-
analysis algorithms for the automatic discovery 
of regulatory sequence elements, applied to the 
Saccharomyces cerevisiae genome and publicly 
available DNA array data sets. The approach 
relies on the functional annotation of genes. The 
aim is the identification of patterns that are over-
represented in a set of sequences (positive set) 
compared to a reference set (negative set). In this 
case, the authors consider four numbers to decide 
whether a pattern is significantly overrepresented. 
The first represents the number of sequences in the 
positive set that contains the pattern; the second 
is the number of sequences in the negative set 
that contains the pattern; the last two denote the 
number of sequences in each of the two sets that 
do not contain the pattern. Distributions on such 
numbers are used to compute the significance 

potential of being overrepresented for a pattern 
of fixed length, and then analyze all correlations 
found to have a significance potential of at least 
four. Some possible extraction constraints for the 
problem dealt with in  Jensen (2000) are Ec= <1, 
4, k, 0, 0, 0, 0>, observing that, in that algorithm, 
there is no specified minimal pattern length. In 
the paper, the authors also claim that, even if also 
patterns of length 1 are analyzed, patterns shorter 
than 4 nucleotides are not to be considered signifi-
cant. In the same paper, two further techniques are 
presented. The first one consists in a systematic 
analysis of functional annotation, whereas the 
second aims at computing the significance of a 
given pattern using Kolmogorov-Smirnov statis-
tics on DNA array data. The main experimental 
result presented in Jensen (2000) is the discovery 
of a highly conserved 9-mer occurring in the 
upstream regions of genes coding for protea-
somal subunits, that is, the consensus sequence 
GGTGGCAAA, and several other putative and 
known regulatory elements. In particular, for the 
Cbflp-Met2p-Met28p complex and MCB, patterns 
similar to AAAATTTT have been picked up by 
all three methods presented in Jensen (2000), and 
the pattern GTGACTCA as consensus sequence 
for Cbflp-Met2p-Met28p and Met31p/Met32p 
has been found to have significant correlation to 
methionine biosynthesis.

In the context of regulatory processes for 
promoter regions, other approaches have been 
proposed, sometimes considering quite complex 
pattern structures. It can be observed that, the 
more an organism is complicated in terms of 
regulatory processes, the more the corresponding 
patterns to be searched for are characterized by 
the presence of complex structures. In  Marsan 
and Sagot (2000) the authors address the problem 
of extracting consensus motifs for DNA binding 
sites, introducing two exact algorithms to extract 
conserved patterns from a set of DNA sequences. 
The patterns they search for have complex struc-
tures and are named structured motifs. Structured 
motifs may be described as an ordered collection 
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of p≥1 boxes, p substitution rates (one for each box) 
and p-1 intervals of distance (one for each pair of 
successive boxes in the collection). A suffix tree 
generalized on a set of N sequences is used for 
finding such motifs, building first single models 
of fixed length. For each node occurrence of this 
first box, considered in turn, a jump is made in 
the tree down to the descendants situated at lower 
levels. The second algorithm differs from the 
first one since it passes through the nodes at the 
lower levels, grabbing some information the nodes 
contain and jumping back up to the higher level 
again. Both algorithms time complexity scales 
linearly with N2n, where n is the average length of 
the sequences and N their number. An application 
to the identification of promoter and regulatory 
consensus sequences in bacterial genomes is also 
shown. In particular, interesting considerations 
concerning the achieved results for E. coli set of 
non-coding sequences between divergent genes 
might be drawn. In fact, it has been experimen-
tally observed in Marsan and Sagot (2000) that 
extracting a promoter consensus sequence for 
the organism E. coli seems much harder than for 
other organisms, although E. coli is believed to 
have less promoter sequence families. This may 
suggest that, for example, the promoter family 
called σ70 is more degenerate in E. coli than in 
the other organisms, and that it may contain 
more elements. Improvements to the techniques 
presented in  Marsan and Sagot (2000) are illus-
trated in  Carvalho, Freitas, Oliveira, and Sagot 
(2005) where a new data structure, called box-link, 
is used to store the information about conserved 
regions that occur in a well-ordered and regularly 
spaced manner in the dataset sequences. In  Eskin 
(2002) an algorithm to discover composite motifs, 
named MITRA (MIsmatch TRee Algorithm), is 
proposed. The algorithm has two steps: in the 
first step, the problem of finding a larger simple 
motif (called monad in the paper) by preprocess-
ing input data is considered; the preprocessing 
concatenates the various parts of the pattern into 
a set of virtual monads. In the second step, an 

exhaustive monad discovery algorithm is applied 
on the set of virtual monads. The authors define a 
“monad pattern discovery problem”, representing 
patterns as l-mers, that are, continuous strings of 
length l, and defining the concept of (l,d)-neigh-
borhood of an l-mer P to represent all possible 
l-mers with up to d mismatches as compared to P. 
They search for all l-mers that occur with up to d 
mismatches at least a fixed number of times in an 
input string. This problem can be easily related to 
the one described in this chapter, involving sets of 
sequences, simply using, in the place of the input 
string, the set of its suffixes. MITRA was evalu-
ated on biological samples, applying it to upstream 
regions of orthologous genes with known motifs. 
Also  Terracina (2005) addresses the problem of 
extracting frequent structured patterns, consider-
ing both exact and approximate repetitions within 
a set of sequences in input. In particular, the pro-
posed approach allows the discovery of structured 
motifs composed of r highly conserved regions, 
separated by constrained spacers. Moreover, 
approximate repetitions are considered for each 
conserved region, allowing a maximum number 
e of errors, where e is a user-specified parameter. 
The approach exploits compact tries as support 
index structures and represents structured pat-
terns as cross-links between trie nodes. Moreover, 
the concept of e-neighbor pattern is introduced 
allowing the approach to be made independent 
of the alphabet exploited to express input strings. 
Tests were reported both on synthetic data and on 
biological data, exploiting, in the former ones, the 
noncoding regions from the whole genomes of B. 
subtilis, H. Pylori and E. coli. The work of Fassetti 
(2006) represents an extension of Terracina (2005), 
providing an algorithm for the identification of 
novel classes of structured motifs, where several 
kinds of “exceptions” (whose biological relevance 
recently emerged in the literature) may be toler-
ated in pattern repetitions, such as skips between 
boxes, box swaps and box inverse. The papers by 
Carvalho et al. (2005), Eskin and Pevzner (2002), 
Fassetti, Greco, and Terracina (2006), Marsan 
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and Sagot (2000),  and Terracina (2005) all deal 
with a common version of the problem of pattern 
discovery, where the extraction constraints are 
of the type Ec= <2, 1, lmax, dmin, dmax, emin, emax> 
and the interest for the patterns is related to the 
frequency of their occurrences. 

In Palopoli, Rombo, and Terracina (2005) an 
approach is presented concerned with the defini-
tion and the implementation of a framework al-
lowing for defining and resolving under-specified 
motif extraction problems where, for instance, 
the number and the length of boxes can be vari-
able. The method is based on the observation that 
approaches presented in the literature are often 
tailored on specific classes of patterns and, as 
with most algorithms, even slight changes in the 
pattern class to be dealt with may cause significant 
problems in their effectiveness. In other words, 
algorithms are available that are efficient and 
effective when the class of patterns of interest is 
quite well defined, but when the class of interest is 
unknown the problem can shift away from motif 
extraction to the selection of the right approach 
to apply. The framework proposed in Palopoli et 
al. (2005) is general in that it covers a wide range 
of pattern classes, and the computed results can 
be exploited to guide the selection of specific, 
efficient, algorithms tailored on the resulting 
pattern classes. Moreover, it can be exploited as 
a “fast prototyping” approach to quickly verify 
the relevance of new pattern classes in specific 
biological domains. This framework is based on 
automatically generating logic programs start-
ing from user-defined under-specified extraction 
problems for locating various kinds of motifs in a 
set of sequences. According to our formalization, 
the most general form of extraction constraints 
Ec = <n, lmin, lmax, dmin, dmax, emin, emax> can be as-
sociated with this approach, since it includes a 
large number of pattern classes. 

eMerGent And future trends

This is the final part of our narration, and we can 
discuss some of the approaches recently emerging 
in this fascinating field. In the works presented 
in the third section, the concept of interest for 
patterns was usually related to the frequency of 
occurrences, that is, patterns were interesting 
if they were over-represented in a given set of 
sequences. In many biological contexts though, 
patterns occurring unexpectedly, often or rarely, 
often called surprising words, can be associated 
with important biological meanings, for example, 
they can be representative of elements having 
patterns repeated surprisingly differently from 
the rest of population due to some disease or 
genetic malformation. Distance measures based 
not only on the frequency of occurrences of a pat-
tern, but also on its expectation, are assuming a 
fundamental role in these emergent studies. Thus, 
interesting patterns can be patterns such that the 
difference between observed and expected counts, 
usually normalized to some suitable moment, 
are beyond some preset threshold. The increas-
ing volumes of available biological data makes 
exhaustive statistical tables become excessively 
large to guarantee practical accessibility and 
usefulness. In Apostolico, Bock, and Lonardi 
(2003) the authors study probabilistic models 
and scores for which the population of potentially 
surprising words in a sequence can be described 
by a table of size at worst linear in the length of 
that sequence, supporting linear time and space 
algorithms for their construction. The authors 
consider as candidate surprising words, only the 
members of an a priori (i.e., before any score is 
computed) identified set of representative strings, 
where the cardinality of that set is linear in the 
input sequence length. The construction is based 
on the constraint that the score is monotonic in 
each class of related strings described by such a 
score. In the direction of extracting over-repre-
sented motifs, the authors of Apostolico, Comin, 
and Parida (2005) introduce and study a charac-
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terization of extensible motifs in a sequence which 
tightly combines the structure of the pattern, as 
described by its syntactic specification, with the 
statistical measure of its occurrence count. They 
show that a prudent combination of saturation 
conditions (expressed in terms of minimum 
number of don’t care compatible with a given list 
of occurrences) and monotonicity of probabilistic 
scores over regions of constant frequency afford 
significant parsimony in the generation and test-
ing of candidate over-represented motifs. The 
approach is validated by tests on protein sequence 
families reported in the PROSITE database. In 
both the approaches illustrated in Apostolico et al. 
(2003) and  Apostolico et al. (2005), the concept 
of interestingness is related to the concept of sur-
prise. The main difference between them is that 
the former aims at showing how the number of 
over- and under-represented words in a sequence 
can be bound and computed in efficient time and 
space, if the scores under consideration grow 
monotonically, a condition that is met by many 
scores; the latter presents a novel way to embody 
both statistical and structural features of patterns 
in one measure of surprise. 

If the emergent trends underline the impor-
tance of making the search for motifs occurring 
unexpectedly often or rarely in a given set of 
sequences in input efficient, further studies are 
driven towards the characterization of patterns 
representing outliers for a given population, look-
ing at the structure of the pattern as the key to 
detect unexpected properties possessed by a single 
individual, being object of examination, belonging 
to a large reference collection of categorical data. 
Moreover, the complexity of biological processes, 
such as gene regulation and transcription, in eu-
karyotes organisms, leaves many challenges still 
open and requires the proposal of new and more 
efficient techniques to solve particular problems, 
such as the computation of distances on specific 
classes of patterns, or of operations on boxes more 
complex than swaps or skips.

conclusIon

The ever-increasing growth of the amount of 
biological data that are available and stored in 
biological databases, significant especially after 
the completion of human genome sequencing, 
has stimulated the development of new and ef-
ficient techniques to extract useful knowledge 
from biological data. Indeed, the availability of 
enormous volumes of data does not provide “per 
se” any increase in available information. Rather, 
suitable methods are needed to interpret them. 

A particular class of biological data is biose-
quences, denoting DNA or protein sequences, 
and characterized by the presence of regular 
expressions associated with the presence of 
similar biological functions in the different mac-
romolecules. Such regularities can be represented 
by substrings, that are, patterns, common to a 
number of sequences, meaning that sequences 
sharing common patterns are associated with a 
common biological function in the corresponding 
biological components. 

The main aim of this chapter is that of ad-
dressing the problem of mining patterns that 
can be considered interesting, according to some 
predefined criteria, from a set of biosequences. 
First, some basic notions and definitions have 
been provided concerning concepts both derived 
from string matching and from pattern discov-
ery for sets of sequences. Then, since in many 
biological problems such as, for example, gene 
regulation, the structure of the repeated patterns 
in the sequences can be fixed for the generic 
case, and maybe also complex and vary with the 
different analyzed cases, an intuitive formaliza-
tion of the problem has been given considering 
structural properties in which parameters related 
to the structure of the patterns to search for can 
be specified according to the specific problem. 
This formalization aimed at guiding the reader 
in the discussion put forward about a number of 
approaches to pattern discovery that have been 
presented in the literature in recent years. The 
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approaches regarded fundamental areas of ap-
plication of pattern discovery in biosequences, 
such as protein family characterization, tandem 
repeats and gene regulation. A further section has 
been devoted to pointing out emergent approaches, 
dealing with the extraction of patterns occurring 
unexpectedly often or rarely and to pointing out 
possible future developments.

As a final remark, it is worth pointing out that 
mining patterns is central as well w.r.t. many bio-
logical applications. It has been applied to solve 
different problems involving sets of sequences, 
as an alternative to other existing methods (e.g., 
sequence alignment) but, especially, as a powerful 
technique to discover important properties from 
large data bunches. Biology is an evolving sci-
ence, and emerging biological data are, in some 
cases, sets of aggregate objects rather than just 
biosequences. Therefore, it is anticipated that a 
very interesting evolution of the problem of pat-
tern discovery presented in this chapter consists 
in its extension to more structured cases, involv-
ing objects that cannot be encoded as simple 
sequences of symbols. 
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AbstrAct

Data visualization plays a crucial role in data mining and knowledge discovery. Its use is however 
often difficult due to the large number of possible data projections. Manual search through such sets 
of projections can be prohibitively timely or even impossible, especially in the data analysis problems 
that comprise many data features. The chapter describes a method called VizRank, which can be used 
to automatically identify interesting data projections for multivariate visualizations of class-labeled 
data. VizRank assigns a score of interestingness to each considered projection based on the degree of 
separation of data instances with different class label. We demonstrate the usefulness of this approach 
on six cancer gene expression datasets, showing that the method can reveal interesting data patterns 
and can further be used for data classification and outlier detection.
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IntroductIon 

Data visualization can be a powerful tool for ex-
tracting knowledge from data. When displaying 
the right set of features, data visualization can 
uncover interesting and potentially useful patterns 
present in the data. The quality of visualization, 
and with it the clarity and interestingness of dis-
played patterns, depends on the particular set of 
visualized features and on the selected visualiza-
tion method. The goal of data mining related to 
visualization is thus to identify relevant features 
and find the projections that uncover the patterns 
hidden in the data.

The notion of interestingness in the data de-
pends on the type of data-mining task. In case 
of unsupervised data mining, that is, considering 
unlabeled (classless) data, interesting projections 
are those that show unusual trends, clusters of 
points or identify outliers. In supervised data 
mining, where data is annotated with class infor-
mation, interesting projections are those where 
data instances of the same class are grouped and 
well separated from instances of other classes. 
Such projections can explain the role of various 
features, help us visually induce rules for discrimi-
nating between classes, and can even be used to 
predict the class label of a new data instance. In 
this chapter, we focus on supervised data mining 
and describe an automated approach that can find 
interesting data visualizations.

Today many popular visualization techniques 
are available to data miners, including one- and 
two-dimensional visualization methods like 
histograms, pie charts, scatterplots, and multi-
dimensional visualizations like radviz, polyviz, 
parallel coordinates and survey plots (Harris, 
1999). Multidimensional methods depict relations 
between several features at once and are more 
expressive than low-dimensional visualizations, 
which are more widely used due to their simplic-
ity and wide availability in popular data analysis 
tools. Multidimensional visualizations can also 
become harder to interpret with increasing number 

of visualized features. A more important reason 
that limits the use of multidimensional visualiza-
tions is, however, the abundance of possible pro-
jections that can be used. For a low-dimensional 
visualization a data miner only needs to select a 
feature or (at most) a pair of features that yield an 
interesting and informative plot. For a visualiza-
tion of multiple features, a correspondingly larger 
subset of features needs to be selected, properly 
arranged and optimized. Selecting an appropriate 
set of features is, as we also show in this chapter, 
far from trivial and most often cannot be done 
manually.

We have recently developed a method called 
VizRank (Leban, Zupan, Vidmar, & Bratko, 2006) 
that can search for interesting multidimensional 
visualizations of class-labeled data. VizRank as-
signs the “interestingness” score to projections 
based on how well they separate instances of 
different classes. Among many possible projec-
tions, the user is then presented only with a small 
subset of best-scored visualizations that provide 
the most informative insight into the data. For 
example, Figure 1 shows four different scatterplot 
projections of the microarray data from leukemia 
tissue samples (Golub, Slonim, Tamayo, Huard, 
Gaasenbeek, & Mesirov, 1999). The data set it 
considers consists of 7,071 features (gene expres-
sion measurements) and 72 data instances (tissue 
samples). The scatterplots in Figure 1 show the 
worst, two medium, and the best-ranked projection 
by VizRank. While in the best ranked-projection 
(Figure 1(d)) the separation between two classes 
(ALL and AML) is very clear and the visualization 
clearly suggests a classification rule, there is no 
such separation in the worst ranked projection. It is 
obvious that the choice of features to be displayed 
in the visualization can largely impact the utility 
of the visualization. 

Also notice that with 7,071 features there are 
7,071*7,070/2= 24,995,985 possible two-feature 
projections. Manual search among this many scat-
terplots is clearly unfeasible. VizRank automates 
this search, and uses a heuristic to inspect only 
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a small subset of candidate projection. In this 
chapter, we introduce the visualization techniques 
used together with VizRank, in detail describe 
VizRank’s scoring algorithm and heuristic search 
technique, and demonstrate its utility on the 
analysis of various cancer microarray datasets, 
which recently gained substantial attention in data 
mining community and pose specific problems to 
data analysis due to inclusion of many features. 

Visualization Methods 

A large number of techniques for visualizing 
multidimensional data are today available to 

data miners. Utilizing several taxonomies based 
on Keim and Kriegel (1996), we can classify all 
techniques into five different groups: geometric, 
pixel-oriented, icon-based, hierarchical, and graph 
based techniques. 

VizRank can be applied to geometric visualiza-
tion methods where data instances are visualized 
as points and the values of visualized features only 
influence the position of the point and not its size, 
shape or color (symbol’s properties can, however, 
be used to represent class value). Examples of 
such methods that will be shown in this chapter 
are scatterplot, radviz, and polyviz. Since scat-
terplot is a well-known technique, we will only 
describe the latter two techniques. 

 
(a) 46.4% (b) 64.1% 

  
(c) 81.3% (d) 96.5% 

 

Figure 1. Four scatterplot projections of the leukemia data set (see section Experimental Analysis for 
details) and the corresponding scores assigned by VizRank
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Radviz (Hoffman, Grinstein, & Pinkney, 
1999) is a nonlinear visualization method where 
the visualized features are represented as anchor 
points equally spaced around the perimeter of a 
unit circle. Data instances are shown as points 
inside the circle, with their positions determined 
by a metaphor from physics (see Brunsdon, Fother-
ingham, & Charlton, 1998) for a formal definition): 
each data point is held in place with springs that 
are at one end attached to the point and at the other 
to the feature anchors. The stiffness of each spring 
is proportional to the value of the corresponding 
feature and the point ends up at the equilibrium 
position. Prior to visualizing, the values of each 
feature are usually scaled to the interval between 
0 and 1 to make all features equally influential. 
Figure 2(a) shows a radviz plot for the leukemia 
data set introduced in the chapter’s first section, 
with lines representing springs for the selected 
data point. Radviz projection is defined by the 
selection of features that are visualized and by 
their specific order on the unit circle. The number 
of different projections can be very large: for a 
data set with n features, there are n!/[2m(n–m)!] 
different radviz projections with m features. For 
illustration, for a thousand-feature data set there 

are more than 166 millions different three-feature 
projections. To obtain a six-featured visualization 
such as the one from Figure 2(a), one has to choose 
from 1022 different projections.

The polyviz visualization method (Hoffman 
et al., 1999) can be seen as an extension of the 
radviz method where each visualized feature is 
represented with an edge of a polygon and the 
ends of the edge represent the minimum and 
maximum values of that feature. When visualizing 
a data instance, first the appropriate position on 
each edge is determined based on the values of 
the data instance. These edge positions are then 
considered as anchors and the same principle as 
in radviz is applied, where each anchor attracts 
the data point with a force proportional to the 
feature value. A short line is usually drawn from 
the anchor position on the edge towards the final 
position of the point, which allows us to observe 
distribution of values along each edge (feature). 
An example of a polyviz plot of the cancer mi-
croarray data set (MLL data, see experimental 
analysis for description) that contains eight 
features and has an excellent class separation is 
shown in Figure 2(b). 

(a) (b) 
 

Figure 2. A radviz projection of the leukemia data set (a) and polyviz projection of the MLL data set (b). 
Springs with corresponding feature values are drawn for one data instance (see section Experimental 
Analysis for description of the data sets)
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A useful multidimensional projection of su-
pervised data that offers some insight into the 
observed data should clearly expose some class 
separation patterns. Such are both visualizations in 
Figure 2. Beyond class separation they also offer 
an interpretation, as the effect of the expression 
of genes presented as features in the visualization 
graph is clearly depicted. For instance, Figure 
2(a) suggests that tissue samples of acute myeloid 
leukemia (AML) have higher expression at genes 
CSTA, ZYX and CST3 and lower expression at 
genes TCL1A, HG1612, and CCND3. 

vizrank ProJectIon rAnkInG 

VizRank (Leban et al., 2006), which is short for 
visualization ranking, is a method that consid-
ers a class-labeled data set and for a particular 
multidimensional visualization method obtains a 
list of most interesting projections with best class 
separation. Using VizRank, the data analyst does 
not have to manually search through all possible 
projections, but can focus on a small subset of 
top-ranked by VizRank that are likely to provide 
the best insight into the data and reveal most 
interesting classification patterns.

VizRank evaluates interestingness of each 
projection based on how well it separates data 
points with different class labels. For each subset of 
features and the related projection parameters (e.g., 
placement of the features in radviz), it computes 
the positions of data points. The quality of the 
projection is then judged based on performance of 
a machine learning method in developing a clas-
sification model using only the positional informa-
tion of data points in a particular projection – the 
available features for learning are therefore only 
the x and y positions of points in the projection. 
With an appropriately chosen learning algorithm, 
the predictive accuracy assessed from such proce-
dure corresponds to the degree of class separation 
in particular visualization. That is, a machine 
learning algorithm will perform more accurately 

for projections where data instances of different 
class are well separated. Classification accuracy 
assessed in this way is then used as an indicator 
for the interestingness of the projection. 

Projection scoring and selection of 
Machine learning Method 

Not all machine learning algorithms are suitable 
for evaluating projections. Some of them, such 
as Naive Bayes (Mitchell, 1997) consider each 
feature independently when classifying a data 
instance. This does not fit our purpose, as we want 
to evaluate planar projections and need to take 
into account possible relationships between x- and 
y-axis, that is, between two attributes that provide 
us with positional information. Machine learning 
methods may often have limitations regarding 
the type of decision boundaries they can infer 
from the data. Decision trees (Quinlan, 1986), 
for example, use straight vertical and horizontal 
decision boundaries that partition the projection 
into a set of rectangles, thus imposing a rather 
stringent constraint over the type of separation 
between instances of different class.

A machine learning method that we found 
most appropriate for our purpose is k-nearest 
neighbors (k-NN) (Cover & Hart, 1967). k-NN 
predicts the class of a data instance by observing 
class distribution of its k nearest data instances 
(“neighbors”). There is no constraint on the 
type of decision boundary, as this is implicitly 
inferred from the position of data instances and 
can in principle take any shape. We measure the 
distances by the Euclidean metric, which may well 
approximate the human’s perception of distance 
between data instances in the two-dimensional 
plot. As for the number of neighbors, we follow 
the recommendation of Dasarathy (1991) who 
suggested to use Nk = , where N is the number 
of data instances.

To evaluate the performance of the k-NN 
classifier we can choose among many scoring 
functions. One of most often used measures 
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in machine learning is classification accuracy, 
which is defined as the proportion of correctly 
classified instances. The classification accuracy 
is, however, too crisp of a measure that does not 
take into account the predicted probabilities of 
class labels. Among the measures that will treat 
the probabilities are Brier score, area under curve 
(AUC), and average probability of correct clas-
sification (Witten & Frank, 2005). While any 
of these could be used, we opted for the latter 
because of its intuitive simplicity. The measure 
is defined as: 

1

1 ( )
N

i i
i

P P y x
N =

= ∑

where N is the number of data instances and 
P(yi|xi) is the probability assigned to the correct 
(known) class value yi for data instance xi. The 
k-NN’s accuracy is tested using the leave-one-out 
evaluation (Witten and Frank, 2005), in which 
each data instance is classified using a classifier 
trained on all instances except the tested one. 

search heuristic 

As we have illustrated in previous sections, the 
number of possible projections for a chosen mul-
tidimensional visualization method can rise expo-
nentially with the number of features. Although 
in practice, VizRank can rank several thousands 
of projections in a minute of runtime, it cannot 
exhaustively search through all possible projec-
tions of datasets containing hundreds or possibly 
thousands of features. To be able to treat such 
cases, we have developed a heuristic approach. 
This starts with scoring each individual feature 
in the data set using some measure like ReliefF 
(Kononenko, 1994) or signal-to-noise ratio (S2N) 
(Golub et al., 1999). Assuming that the features 
which—considered on their own—bear some 
information on class discrimination are also more 
likely to be involved in interesting projections, 
VizRank searches for best projections by consider-
ing combinations of best-ranked features first. 

Figure 3 shows the distribution of projection 
scores for 5,000 radviz projections from leukemia 
data set (see Introduction) as they were selected 
for evaluation with and without proposed search 

Figure 3. Distribution of projection scores for 5,000 radviz projections of the leukemia data set as se-
lected with and without the search heuristic
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heuristic. Using heuristic search, we were able to 
find more informative visualizations. In particular, 
most informative projections, that is, projections 
with very high scores, were completely missed if 
heuristic search was not used. Use of the search 
heuristic is therefore both advisable and necessary 
in analyses of high-dimensional datasets where 
only a small fraction of possible projections can 
be evaluated due to runtime constraints.

note on complexity of the Algorithm

Scoring of the projection using leave-one-out and 
k-nearest neighbor algorithm has a complexity 
on the order of O(N2), where N is the number of 
instances in a data set. This complexity is high, 
especially for larger datasets, and can be reduced 
to O(N*log(N)) using a more efficient implemen-
tation of nearest neighbor search (Krauthgamer 
& Lee, 2004). Notice that it is also unlikely that 
the data set considered by our approach will be 
extremely large, as these cannot be nicely visu-
alized using point-based visualization. Typical 
datasets for which these visualizations are ap-
propriate include from several hundreds to (at 
most) couple of thousand data items, where our 
implementation of VizRank typically evaluates 
about 1,000 to 10,000 projections per minute of 
runtime on a medium-scaled desktop PC. 

Another major factor that contributes to the 
complexity of the procedure is the number of 
projections to evaluate. Consider radviz visu-
alization, which can include arbitrary number 
of features in a single plot. The number of dif-
ferent projections grows exponentially with the 
number of features included in visualizations. 
Yet, in practice, visualizations with more than 
ten features are rarely considered since they are 
hard to interpret. Still, even with this limitation, it 
is impossible to evaluate all possible projections. 
The approach we propose is to consider only the 
projections that can be evaluated in some limited 
time. Due to the proposed heuristic search, and as 
we experimentally demonstrate on the studies with 

microarray cancer data, the overall approach can 
find interesting projections with high predictive 
power in few minutes of runtime.

exPerIMentAl AnAlysIs 

We tested VizRank on several microarray gene ex-
pression datasets. The analysis of such datasets has 
recently gained considerable attention in the data 
mining community. Typically, the datasets include 
up to few hundred data instances. Instances (tissue 
samples from different patients) are represented 
as a set of gene expression measurements; most 
often, datasets include measurements of several 
thousands genes. As tissue samples are labeled, 
with classes denoting malignant vs. nonmalignant 
tissue, or different cancer types, the task is to find 
if the cancer type can be diagnosed based on the 
set of gene expressions. Another important issue 
emerging from cancer microarray datasets is to 
consider what is the minimal number of genes 
for which we need to measure the expression in 
order to derive a reliable diagnosis.

In the following, we first describe six datasets 
used in our analysis and discuss the top-ranked 
projections. We then present a study in which 
we used top-ranked projections as simple and 
understandable prediction models and show that 
despite their simplicity we achieve high prediction 
accuracies. We also show how these projections 
can be used to find important features and identify 
possible outliers or misclassified instances. 

datasets 

Gene expression datasets are obtained by the use 
of DNA microarray technology, which simulta-
neously measures expressions of thousands of 
genes in a biological sample. These datasets can 
be used to identify specific genes that are dif-
ferently expressed across different tumor types. 
Several recent studies of different cancer types 
(Armstrong, Staunton, Silverman, Pieters, den 
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Boer, & Minden, 2002; Golub, et al., 1999; Nutt, 
Mani, Betensky, Tamayo, Cairncross, & Ladd, 
2003; Shipp, Ross, Tamayo, Weng, Kutok, & 
Aguiar, 2002) have demonstrated the utility of 
gene expression profiles for cancer classifica-
tion, and reported on the superior classification 
performance when compared to standard mor-
phological criteria. 

What makes microarray datasets unique and 
difficult to analyze is that they typically contain 
thousands of features (genes) and only a small 
number of data instances (patients). Analysts typi-
cally treat them with a combination of methods for 
feature filtering, subset selection and modeling. 
For instance, in the work reported by Khan, Wei, 
Ringner, Saal, Ladanyi, & Westermann (2001) 
on the SRBCT dataset, the authors first removed 
genes with low expression values throughout the 
data set, then trained 3,750 feed-forward neural 
networks on different subsets of genes as deter-
mined by principal component analysis, analyzed 
the resulting networks for most informative genes 
thus obtaining a subset of 96 genes expression of 
which clearly separated different cancer types 
when used in multidimensional scaling. Other 
approaches, often similar in their complexity, 
include k-nearest neighbors, weighted voting 
of informative genes (Golub et al., 1999) and 
support vector machines (Statnikov, Aliferis, 
Tsamardinos, Hardin, & Levy, 2005). In most 

cases, the resulting prediction models are hard or 
even impossible to interpret and can not be com-
municated to the domain experts in a simple way 
that would allow reasoning about the roles genes 
play in separating different cancer types. 

In our experimental study we considered 
six publicly available cancer gene expression 
datasets with 2 to 5 diagnostic categories, 40 to 
203 data instances (patients) and 2,308 to 12,600 
features (gene expressions). The basic informa-
tion on these is summarized in Table 1. Three 
datasets, leukemia (Golub et al., 1999), diffuse 
large B-cell lymphoma (DLBCL) (Shipp et al., 
2002) and prostate tumor (Singh, Febbo, Ross, 
Jackson, Manola, Ladd, 2002) include two di-
agnostic categories. The leukemia data consists 
of 72 tissue samples, including 47 with acute 
lymphoblastic leukemia (ALL) samples and 25 
with acute myeloid leukemia (AML), each with 
7,074 gene expression values. The DLBCL data 
set includes expressions of 7,070 genes for 77 
patients, 59 with DLBCL and 19 with follicular 
lymphoma (FL). The prostate tumor data set 
includes 12,533 genes measured for 52 prostate 
tumor and 50 normal tissue samples. 

The other three datasets analyzed in this work 
include more than two class labels. The mixed 
lineage leukemia (MLL) (Armstrong et al., 2002) 
data set includes 12,533 gene expression values for 
72 samples obtained from the peripheral blood or 

Data set Samples 
(Instances)

Genes 
(Features)

Diagnostic 
classes

Majority class

Leukemia 72 7,074 2 52.8%

DLBCL 77 7,070 2 75.3%

Prostate 102 12,533 2 51.0%

MLL 72 12,533 3 38.9%

SRBCT 83 2,308 4 34.9%

Lung cancer 203 12,600 5 68.5%

Table 1. Cancer-related gene expression datasets used in our study
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bone marrow samples of affected individuals. The 
ALL samples with a chromosomal translocation 
involving the mixed lineage gene were diagnosed 
as MLL, so three different leukemia classes were 
obtained (AML, ALL, and MLL). The small round 
blue cell tumors (SRBCT) dataset (Khan et al., 
2001) consists of four types of tumors in child-
hood, including Ewing’s sarcoma (EWS), rhab-
domyosarcoma (RB), neuroblastoma (NB) and 
Burkitt’s lymphoma (BL). It includes 83 samples 
derived from both tumor biopsy and cell lines and 
2,308 genes. The last dataset is the lung cancer 
dataset (Bhattacharjee, Richards, Staunton, Li, 
Monti, & Vasa, 2001) that contains 12,600 gene 
expression values for 203 lung tumor samples 
(139 adenocarcinomas (AD), 21 squamous cell 
lung carcinomas (SQ), 20 pulmonary carcinoids 
(COID), 6 small cell lung cancers (SMLC) and 
17 normal lung samples (NL)). 

top-ranked Projections 

We applied VizRank to evaluate scatterplot, rad-
viz, and polyviz projections. We limited radviz 
and polyviz projections to a maximum of eight 
features since projections with more features 
are harder to interpret. For each dataset and vi-
sualization method, VizRank evaluated 100,000 
projections as selected by the search heuristic. 
With these constraints, the runtime for the largest 

of the datasets in terms of number of instances 
was about half an hour.

Top projections for each dataset (Figures 1(c), 
2, and 4) show that VizRank is able to find a pro-
jection with a relatively good to excellent class 
separation using only a fraction of available fea-
tures. Scores for these projections in Table 2 show 
that radviz and polyviz projections consistently 
offer better class separation than scatterplots. 
This was expected since scatterplots present the 
data on only two features, while we searched for 
radviz and polyviz visualizations that included 
up to eight features. The advantage of using more 
features is especially evident in datasets with many 
class values (e.g., lung cancer) where two features 
alone are clearly insufficient for discrimination 
between all classes. 

Important to our study was to answer the ques-
tion if the features (genes) used in best projections 
bear also biological relevance, that is, were they 
expected to be associated with particular disease. 
Since most datasets try to discriminate between 
different tumor types, we assumed that most useful 
genes will mostly be markers of different tissue 
or cell origin and will not necessarily be related 
to cancer pathogenesis. However, we found that 
many of the genes appearing in the best projections 
are annotated as cancer or cancer-related genes 
according to the Atlas of Genetics and Cytogenet-
ics in Oncology and Haematology (http://www.

Data set P for best-ranked projection

Scatterplot Radviz Polyviz

Leukemia 96.54% 99.93% 99.91%

DLBCL 89.34% 99.90% 99.87%

Prostate 87.34% 96.58% 97.23%

MLL 90.12% 99.70% 99.75%

SRBCT 83.52% 99.94% 99.92%

Lung cancer 75.48% 93.49% 93.66%

Table 2. Scores of top projections found by VizRank using different visualization methods
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infobiogen.fr/services/chromcancer/index.html). 
On the other hand, for the prostate dataset, where 
we try to differentiate between tumor and normal 
tissue samples, one would expect the “marker” 
genes to be cancer related. We support our 
hypothesis by ascertaining that six out of eight 
genes used in the best radviz projection (LMO3, 
RBP1, HSPD1, HPN, MAF, and TGFB3) (Figure 
4(b)) are cancer related according to the cancer 
gene atlas. 

For brevity, we here only present a biological 
interpretation of the genes used in the best visual-
izations of a single data set, and for this consider 
the MLL data. The best polyviz projection for this 
dataset is shown in Figure 2(b), and exhibits a clear 
separation of instances with different diagnostic 
class. In the visualization, class ALL instances 
lie closer to the anchor points of the MME and 
POU2AF1 gene. The anchor point of gene CCNA1 
most strongly attracts the MLL class samples and, 
by some degree, also the AML samples. These 

findings are consistent with the work of Armstrong 
et al. (2002), in which they report on genes MME 
and POU2AF1 to be specifically expressed in 
ALL and gene CCNA1 in MLL. There is also 
a well-founded biological explanation for the 
appearance of these genes in some of the other 
best projections separating different classes of 
the MLL dataset. For example, MME (membrane 
metalloendopeptidase), also known as common 
acute lymphocytic leukemia antigen (CALLA), is 
an important cell surface marker in the diagnosis 
of human acute lymphocytic leukemia (ALL) 
(http://www.ncbi.nlm.nih.gov/entrez/dispomim.
cgi?id=120520). It is present on leukemic cells of 
pre-B phenotype, which represent 85% of cases of 
ALL, and is not expressed on the surface of AML 
or MLL cells. Similarly, gene POU2AF1 (Pou 
domain class 2 associating factor 1) is required for 
appropriate B-cell development (Schubart, Massa, 
Schubart, Corcoran, Rolink, & Matthias, 2001) 
and is therefore expressed in ALL samples but 

  
(a) Lung cancer (93.49%) (b) Prostate tumor (97.23%) 

  
(c) SRBCT (99.92%) (d) DLBCL (99.87%) 

Figure 4. Optimal radviz and polyviz projections for lung cancer, prostate tumor, SRBCT, and DLBCL 
data set.
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not in instances with AML or MLL class label. 
On the other hand, gene CCNA1 (cyclin A1) is 
a myeloid-specific gene, expressed in hemato-
poietic lineages other than lymphocytes (Liao, 
Wang, Wei, Li, Merghoub, & Pandolfi, 2001). 
Overexpression of CCNA1 results in abnormal 
myelopoiesis, which explains the higher expres-
sion in AML samples. According to Armstrong 
et al. (2002), lymphoblastic leukemias with MLL 
translocation (MLL class) constitute a distinct 
disease and are characterized by the expression of 
myeloid-specific genes such as CCNA1. Because 
this gene is myeloid-specific it is not expressed 
in ALL samples. 

Instead of a single good projection, VizRank 
can often find a set of projections with high scores. 
We can then analyze what features are shared 
between these projections. For example, we may 
want to know whether a particular gene appears in 
only one good projection or in several top-ranked 
projections. In Figure 5(a) we show a plot that 
lists the first 20 genes present in the top-ranked 

scatterplot projections of the MLL dataset. For 
each pair of genes (one from the x and one from 
the y axis), a black box indicates whether their 
scatterplot projection is ranked among the best 
500. The figure shows that three genes—MME, 
DYRK3, and POU2AF1—stand out in the number 
of their appearances in the top-ranked projections. 
Interestingly, in the original study of this dataset 
(Armstrong et al., 2002) these three genes were 
listed as the 1st, 3rd, and 10th gene, respectively, 
among the top 15 genes most highly correlated 
with ALL class compared with the MLL and 
AML classes. 

We have performed a similar experiment for 
the leukemia dataset. For each gene we counted 
how often it appears in the top 500 scatterplots. 
The histogram of 20 most frequent genes is shown 
in Figure 5(b). It is evident that gene ZYX (zyxin) 
particularly stands out as it was present in more 
than 260 out of 500 projections. ZYX is also one 
of the anchor genes in the best radviz projection 
of the leukemia dataset (Figure 2(a)). One can 

 
(a) (b) 

 

Figure 5. (a) Genes on the x and y axis are the first 20 genes from the list of top-ranked scatterplot 
projections of the MLL data set. Black boxes indicate that the corresponding pair of genes on the x and 
y axis form a scatterplot that is ranked as one of the best 500 scatterplots. (b) Histogram of genes that 
appear most frequently in the list of 500 best ranked scatterplot projections of the leukemia data set.
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observe in the figure that instances from the AML 
class lie closer to this anchor; therefore, they have 
higher expression of this gene. Zyxin has been 
previously recognized as one of the most important 
genes in differentiating acute lymphoblastic and 
acute myeloid leukemia samples. In the original 
study of this dataset (Golub et al., 1999), zyxin 
was reported as one of the genes most highly cor-
related with ALL-AML class distinction. Wang 
and Gehan (2005) systematically investigated 
and compared feature selection algorithms on 
this dataset, and reported that zyxin was ranked 
as the most important gene in differentiating the 
two leukemias by most filter and wrapper feature 
selection methods. They also give a possible bio-
logical explanation for the involvement of zyxin 
in leukaemogenesis.

We found similar biological relevance of genes 
that participated in the best visualizations of 
other datasets. Besides finding projections with 
good class separations, VizRank therefore also 
pointed at specific important genes, which were 
already experimentally proven to be relevant in 
the diagnosis of different cancer types. Most of 
our visualizations included in this chapter point 
to nonlinear gene interactions, giving VizRank 
an advantage over univariate feature selection 
algorithms prevailingly used in the current related 
work in the area. 

visualization-based Classification 

Because of a huge number of possible projections 
and a relatively small number of data instances, one 
could argue that it is possible to find a projection 
with excellent class separation by chance. Even 
for a random dataset, if using enough features, 
VizRank could then find an excellent projection 
and would thus overfit the data. 

To prove that this is not the case, we tested the 
predictive accuracy of the top-ranked projection 
using ten-fold cross-validation. The data was di-
vided into ten subsets of approximately equal size 
and class distribution; in each of the ten iterations 
VizRank was given nine subsets and 20 minutes 
to find the best radviz projection with eight or 
less features. The resulting projection was then 
used to classify the data instances in the remain-
ing data subset. To classify using the projection, 
we presented the positional information (x- and 
y-coordinates) together with the instance class 
to a machine learning algorithm, which built a 
model to classify the instances from the left-out 
data subset. For machine learning, we used the 
k-nearest neighbor classifier, with tNk = , 
where Nt is the number of instances in the train-
ing dataset, that is, in the nine subsets used for 
obtaining the best visualization.

Classification	accuracy

Data set VizRank SVM k-NN Naïve 
Bayes

Decision 
trees

Leukemia 93.06% 95.83% 88.89% 93.06% 77.78%

DLBCL 96.10% 98.70% 89.61% 81.82% 89.61%

Prostate 95.10% 93.14% 83.33% 60.78% 80.39%

MLL 93.06% 95.83% 84.72% 84.72% 87.50%

SRBCT 95.18% 100.0% 84.34% 92.77% 84.34%

Lung cancer 91.63% 91.63% 90.64% 73.17% 91.63%

Average rank 1.91 1.33 3.91 4.16 3.66

Table 3. Classification accuracy of different classification methods on tested data sets



���  

Finding Patterns in Class-Labeled Data Using Data Visualization

We compared this approach with four standard 
machine learning approaches, that infer the clas-
sification model from the entire training dataset: 
support vector machines with RBF kernel, k-NN 
using all genes (k=10), naive Bayesian classifier, 
and decision trees (C4.5 algorithm with default 
settings). The results are shown in Table 3. The 
best performance was achieved by support vector 
machines, which was somehow expected since 
they are believed to be the best classification 
method for microarray data (Statnikov et al., 
2005). A more surprising result, however, is that 
simple projections found by VizRank proved to 
be very accurate predictors and were on average 
ranked just below support vector machines, but 
above or even well above other machine learning 
approaches. 

Based on the above we can therefore conclude 
that the top-ranked projections are not the result 
of overfitting but actually show true regularities 

in the data. The results also demonstrate that we 
do not always have to resort to support vector 
machines in order to achieve a good classifica-
tion performance. Instead, methods such as those 
presented in this chapter that in addition to a good 
performance offer also means of interpretation, 
may provide a good alternative.

detecting outliers 

For all the examined datasets, the best radviz and 
polyviz projections (Figures 1(c), 2, and 4) clearly 
separate instances from different classes, with the 
exception of only a few outliers. Identification and 
analysis of these outliers can reveal interesting 
characteristics of the data, where outliers may be 
special cases of a specific disease or may perhaps 
even be misdiagnosed instances.

Figure 4(a) shows the best radviz projection for 
the lung cancer dataset, which contains 5 diag-

Figure 6.  A visualization of class predictions for the selected data instance using best 100 radviz projec-
tions of the lung cancer data set. Although the data instance, which is selected in Figure 4.a, is in the 
data set classified as the AD instance it is often placed inside a group of SQ instances.
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nostic classes and 203 examples. The diagnostic 
classes in the visualization are well separated, 
except for the adenocarcinomas (class AD) and 
squamous cell carcinomas (class SQ), where there 
is a region of overlap. To assess if these instances 
overlap also in other best-ranked projections we 
analyzed the class prediction of the adenocarcino-
mas in the overlapping region in the 100 best radviz 
projections. As a particular example, we analyzed 
the data instance marked with a circle in Figure 
4(a); Figure 6 shows how this data instance was 
classified using the 100 best radviz projections. 
Each horizontal line in the figure represents the 
predicted class probabilities for each class value 
in one projection (horizontal lines are sorted by 
the decreasing probability of AD class). Although 
the observed data instance is classified as adeno-
carcinoma (AD) in some top-ranked projections, 
we can see that it is also classified as squamous 
cell carcinoma (SQ) in roughly half of the con-
sidered projections. Interestingly, after analyzing 
the supplemental information concerning the 
adenocarcinoma tissue samples, we noticed that 
some of the adenocarcinomas have been histo-
logically diagnosed as adenocarcinomas with 
squamous features (Bhattacharjee et al., 2001). 
The instance marked in Figure 4(a) is therefore 
actually a mixture of AD and SQ classes, as can 
also be seen from the class prediction visualiza-
tion shown in Figure 6. 

using vizrank with Parallel 
coordinates 

Parallel coordinates (Inselberg, 1981) are a vi-
sualization method where we were also able to 
(indirectly) apply VizRank. In parallel coordinates 
the features are visualized as parallel and equally 
spaced axes. Each data instance is then visualized 
as a broken line that extends from the first to the 
last axis, intersecting each axis at the position 
that corresponds to the value of the instance. If 
we have class labeled data we can color the lines 
according to class values. An example of a par-

allel coordinates plot for the leukemia dataset is 
shown in Figure 7. 

The ability to perceive an interesting pattern 
in the parallel coordinates plot mainly depends on 
two factors. First is the selection of appropriate, in-
formative features—visualizing an uninformative 
set of features cannot reveal any relevant patterns. 
The second factor is the order in which the axes 
are placed. If the data lines between neighboring 
axes flow in various unrelated directions, the plot 
is cluttered and does not show any pattern. Axes 
should therefore be placed in such a way that lines 
with the same class are as similar as possible and 
thus allow us to easily detect patterns common 
to instances of the same class.

Our experiments show that a good approach 
for selecting features and determining their opti-
mal order is to find good radviz projections using 
VizRank and then place the features from radviz 
to a parallel coordinates plot in the same order. To 
understand why this works, let us assume that we 
found a radviz projection where instances with the 
same class label are grouped and nicely separated 
from other classes. The fact that data instances 
with the same class lie close together implies they 
have similar values at the neighboring visualized 
features, so their lines in parallel coordinates 
plot will be similar. On the other hand, because 
of the good separation of different classes in the 
radviz projection, we will also be able to notice a 
qualitative difference between the forms of lines 
with different class values.

 Figure 7 shows a parallel coordinates plot of 
the features from the radviz projection in Figure 
2(a). In the figure it is clearly visible that the ALL 
data instances have high values for the first three 
features and low for the last three features, while 
the opposite holds for the instances with AML 
class value. Because a parallel coordinates plot 
offers a different view of the data than radviz and 
polyviz projections, it makes sense to use it in 
combination with the aforementioned methods.
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Related Work 

There are several approaches that were developed 
(or can be adapted) for finding interesting data 
visualizations. Most of them search for the vectors 
in the original feature space that contain some 
interesting information. The two most important 
vectors are then visualized in a scatterplot, one 
vector on the x and the other on the y axis. Such 
projections are called linear projections since each 
axis is a linear combination of original features. 
Following is an overview of such methods. 

In the area of unsupervised learning, one of the 
oldest techniques is principal component analysis 
(PCA). PCA is a dimension reduction technique 
that uses variance as a measure of interestingness 
and finds orthogonal vectors (principal compo-
nents) in the feature space that account for the most 
variance in the data. Visualizing the two most 
important vectors can identify some elongated 
shapes or outliers. A more recent and general 
technique was developed by Friedman and Tukey 
(1974), and is known as projection pursuit. Diaco-
nis and Friedman (1984) proved that a randomly 
selected projection of a high-dimensional dataset 
would show approximately Gaussian distribution 
of data points. Since we are interested in nonran-

dom patterns, such as clusters or long tails, they 
propose to measure interestingness as departure 
from normality. Several such measures, known 
as projection pursuit indices, were developed 
and can be used in a gradient-based approach to 
search for interesting projections. 

Probably the most popular method for finding 
projections for labeled data is Fisher’s linear dis-
criminant analysis (LDA) (Duda, Hart & Stork, 
2000), which finds a linear combination of features 
that best discriminate between instances of two 
classes. When we have more than two classes, 
we can compute discriminants for each pair of 
classes and visualize pairs of discriminants in 
scatterplots. LDA’s drawbacks (sensitivity to 
outliers, assumption of equal covariance matrix 
for instances in each class, etc.) gave rise to 
several modifications of the method. One of the 
most recent ones is normalized LDA (Koren & 
Carmel, 2004), which normalizes the distances 
between instances and makes the method far more 
robust with respect to outliers. Another method 
that searches for projections with a good class 
separation is FreeViz (Demsar, Leban & Zupan, 
2005), which could be considered as a projection 
pursuit for supervised learning. FreeViz plots the 
instances in a two dimensional projection where 

Figure 7. Parallel coordinates plot of the leukemia data set
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the instance’s position in each dimension is com-
puted as a linear combination of feature values. 
The optimization procedure is based on a physical 
metaphor in which the data instances of the same 
class attract, and instances of different classes 
repel each other. The procedure then searches for 
a configuration with minimal potential energy, 
which at the same time results in the optimal (as 
defined by the algorithm) class separation. 

conclusIon

We presented a method called VizRank that can 
evaluate different projections of class labeled data 
and rank them according to their interestingness 
defined by the degree of class separation in the 
projection. Analysts can then focus only on the 
small subset of highest ranked projections that 
contain potentially interesting information regard-
ing the importance of the features, their mutual 
interactions and their relation with the classes. We 
have evaluated the proposed approach on a set of 
cancer microarray datasets, all featuring about 
a hundred data instances but a large number of 
features, which, with the biggest datasets, went 
into several thousands.

Perhaps the most striking experimental result 
reported in this work is that we found simple 
visualizations that clearly visually differentiate 
among cancer types for all cancer gene expression 
datasets investigated. This finding complements a 
recent related work in the area that demonstrates 
that gene expression cancer data can provide 
ground for reliable classification models (Stat-
nikov et al., 2005). However, our “visual” clas-
sification models are much simpler and comprise 
much smaller number of features, and besides 
provide means for a simple interpretation, as was 
demonstrated throughout the chapter. 

The approach presented here is of course not 
limited to cancer gene expression analysis and can 
be applied to search for good visualizations on 
any class-labeled dataset that includes continuous 

or nominal features. VizRank is freely available 
within Orange open-source data mining suite 
(Demsar et al., 2004; Demsar et al., 2004), and 
can be found on the Web at www.ailab.si/orange. 
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AbstrAct

In the context of multidimensional data, OLAP tools are appropriate for the navigation in the data, aiming 
at discovering pertinent and abstract knowledge. However, due to the size of the dataset, a systematic 
and exhaustive exploration is not feasible. Therefore, the problem is to design automatic tools to ease 
the navigation in the data and their visualization. In this chapter, we present a novel approach allowing 
to build automatically blocks of similar values in a given data cube that are meant to summarize the 
content of the cube. Our method is based on a levelwise algorithm (a la Apriori) whose complexity is 
shown to be polynomial in the number of scans of the data cube. The experiments reported in the chapter 
show that our approach is scalable, in particular in the case where the measure values present in the 
data cube are discretized using crisp or fuzzy partitions. 
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IntroductIon

As stated by Bill Inmon in 1990, “A data warehouse 
is a subject-oriented, integrated, time-variant 
and non-volatile collection of data in support of 
management’s decision making process“ (Inmon, 
1992). As data warehouses are devoted to intensive 
decision-oriented querying, classical relational 
database management systems are known to be 
not suitable in this framework. To cope with this 
problem, the multidimensional model of databases 
has been proposed by E. F. Codd more than 10 
years ago in Codd, Codd, and Salley (1993).

In the context of multidimensional databases, 
data are considered as belonging to multidimen-
sional tables, the so-called data cubes or simply 
cubes, defined over several dimensions and in 
which measure values are associated to one value 
in each dimension. On-line analytical process-
ing (OLAP) has become a major research issue, 
aiming at providing users with tools for querying 
data cubes.

Querying a cube is known to be a tedious 
process because, as data are often voluminous, an 
exhaustive exploration is not possible. Therefore, 
it is often the case that users wish to have a rough 
idea of the content of a cube in order to identify 
relevant data. In other words, summarizing the 
content of a data cube is one of the major needs 
of users. The OLAP operators called roll-up and 
drill-down are commonly used to this end. These 
operators allow to explore the data cube accord-
ing to different levels of granularity defined on 
dimensions: while rolling-up according to one or 
several dimensions displays the data at a lower 
level of details, drilling-down has the reverse 
effect of displaying the data at a higher level of 
details. However, it should be noticed that these 
operators work based on predefined hierarchies on 
dimensions, and thus, do not allow to summarize 
a data cube based on its actual content, that is, 
the measure values.

In this chapter, we propose an approach to 
automatically summarize a data cube by comput-

ing sub-cubes, which we call blocks, that mainly 
contain the same measure value. It is important 
to note that in this work, we do not consider the 
option of computing blocks containing exclusively 
the same measure value, which is very restrictive 
and thus, would prevent from obtaining relevant 
summaries. The way we characterize that a block 
b of a cube C mainly contains the measure value 
m can be outlined as follows: Assuming two 
user-given thresholds σ and γ, called the support 
and the confidence thresholds, respectively, b 
mainly contains m if the ratio of the number of 
occurrences of m in b over the cardinality of C is 
greater than σ, and if the ratio of the number of 
occurrences of m in b over the cardinality of b is 
greater than γ. These two ratios are called support 
and confidence of b for m, and as we shall see 
later, the support and the confidence thresholds 
are respectively related to the minimum size and 
to the purity of the block.

Moreover, as measure values are numerical, 
it can be relevant to consider close values as 
equal. We take such an option into account in 
the computations of support and confidence by 
considering two kinds of partitioning of the set of 
measure values present in the data cube, namely 
crisp and fuzzy partitioning.

As in either case the computation of blocks as 
roughly described above is NP-hard, we propose 
a levelwise algorithm a la Apriori and the ex-
periments reported in this chapter show that our 
method is scalable even for data cubes with large 
cardinalities and large numbers of dimensions. 
However, it is important to note that the price 
to pay for scalability is the noncompleteness of 
our method, that is, a cube C may contain blocks 
with supports and confidences greater than the 
corresponding thresholds that are not output. We 
shall discuss this important point in details later 
in the chapter.

The set of all blocks computed by our approach 
is considered as a summary of the cube. In our 
previous work, we have argued that blocks can 
be associated with rules (see Choong, Laurent. 
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& Laurent, 2004), and that they can serve as a 
basis for an efficient visualization of the cube (see 
Choong, Laurent. & Laurent, 2007). It should be 
noticed that, since the computed blocks (obtained 
after partitioning or not) mainly contain a given 
measure value, it might be the case that two or 
more blocks overlap. This important feature of 
our approach is taken into account in Choong 
et al. (2004) by considering fuzzy rules, and 
in Choong et al. (2006) by defining a policy to 
display the most relevant block among all those 
that overlap. In this chapter, we do not address 
the issues of computing rules or of visualizing the 
blocks. Instead, we focus on the computation of 
the blocks in the following respects: 

1. Based on the fact that the method presented 
in Choong et al. (2004) is not complete, we 
enhance our approach and we show some 
partial completeness results in this new 
framework.

2. As in practice, the measure values contained 
in a cube are numerical, we study the impact 
of discretizing these values, using crisp or 
fuzzy partitions.

3. We report experiments conducted on ran-
domly generated  datasets that show that 
our approach is still scalable for large data 
cubes with a high number of dimensions.

The following example illustrates our ap-
proach.

Example 1:  Let us consider the cube C displayed 
in Figure 1. This cube is defined over two dimen-
sions, namely CITY and PRODUCT, and contains 
measure values standing for the quantity of a 
given product sold in a given city. For instance, 
it can be seen that the quantity of product P1 sold 
in city C1 is six units.

Considering a support threshold σ = 1/15 and a 
confidence threshold γ = 2/3, our approach gener-
ates the blocks as represented in Figure 1. These 
blocks are defined as follows in our formalism:

1. b1 = [C1;C1] × [P1; P2] for value 6, because 
the support and the confidence for 6 are 
respectively 1/12 and 1,

2. b2 = [C1;C3] × [P3;P4] for value 8, because 
the support and the confidence for 8 are 
respectively 1/6 and 2/3,

3. b3 = [C3;C4] × [P1;P3] for value 5, because 
the support and the confidence for 5 are 
respectively 1/6 and 2/3,

4. b4 = [C4;C6] × [P3;P4] for value 2, because 
the support and the confidence for 2 are 
respectively 5/24 and 5/6.

First, we note that, for the measure value 6, the 
block defined by b = [C1;C2] × [P1;P2] has a support 
and a confidence equal to 1/8 and 3/4, respectively. 
Therefore, this illustrates the noncompleteness of 
our approach since 1/8 > σ and 3/4 > γ.

Now, assume that instead of integer values, 
the cube of Figure 1 contains numbers that rep-
resent the quantity of sales in thousands of units 
for each city and each product. In this case, it is 
likely that, for instance, in place of 6 for city C1 
and products P1 and P2, the cube contains values 
such as 5.996 and 6.002. In this case, computing 
blocks based on the exact measure value would 
not give the block b1, although the corresponding 
measure values are close to each other. To cope 
with this problem, we consider that the set of 
measure values can be partitioned so as to yield 
relevant blocks.

For instance, in our example, this partitioning 
could be defined by considering for every integer 
X that measure values in [(X – 1).500;X.500[ are 
equal to X. Moreover, we generalize partitionings 
to fuzzy partitionings, so as to consider that [(X 
– 1).500;X.500] and [(X – 2).500;(X + 1).500] 
are respectively the support and the kernel of 
the bin corresponding to the fuzzy notion about 
X thousands.

We mention that building blocks from a data 
cube facilitates its visualization, and the more the 
relevance of the blocks, the better the representa-
tion quality. The issue of data cube representation 
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has been addressed in Choong, Laurent, and 
Marcel (2003), where the authors show that a data 
cube has several representations among which 
some are more relevant than others, according 
to user-specified criteria. In Choong et al. (2003), 
the criterion is that the measure is ordered in an 
increasing manner over all dimensions, and rep-
resentations optimizing this criterion are studied. 
In the present chapter, we consider as relevant 
the representations where same measure values 
are grouped to form blocks as large as possible. 
However, in this chapter, contrary to Choong et 
al. (2003), our goal is not to compute relevant 
representations according to this criterion; in what 
follows, the representation of the data cube is as-
sumed to be fixed, and the blocks are computed 
in this particular representation. In this setting, 
it is relevant to use the blocks computed by our 
approach in order to assess the quality of the 
representation of the cube. More precisely, this 
quality can be related to the following criteria:

• The proportion of elements in the cube that 
are included in the blocks (the higher the 
proportion, the less elements not covered 
by the rules)

• The number of blocks built (the more blocks 
there are, the more heterogeneous data 
are)

• The number of blocks in comparison with the 
number of measure values (if several blocks 
are built for the same measure value m, then 
the different occurrences of m are displayed 
in noncontiguous areas of the cube)

• The number of overlappings between blocks 
and their sizes (the higher the number of 
overlapping blocks, the more mixed the 
data)

The chapter is organized as follows: section 2 
introduces the basic definitions concerning mul-
tidimensional databases and blocks, including 
interval based and fuzzy interval based-blocks. 
Section 3 presents the algorithms to build blocks 
from multidimensional databases and the cor-
responding complexity issues, as well as a thor-
ough discussion about the completeness of our 
approach. Section 4 presents a method based on 
cell neighborhood to improve the completeness of 
our approach. Section 5 reports on the experiments 
performed on synthetic data and on a real  dataset. 
Section 6 presents the related work from the lit-
erature, and in section 7, we conclude the chapter 
and we outline further research directions.

MultIdIMensIonAl dAtAbAses 
And blocks

Basic Definitions

Although no consensual definition has emerged for 
now concerning data representation and manipu-
lation, a multidimensional database is generally 
defined as being a set of data cubes (hereafter 
cubes). A cube can be seen as a set of cells and a 
cell represents the association of a measure value 
with one member in each dimension. Moreover, 
hierarchies may be defined over dimensions, for 
instance to describe sales in function of states and 
not of cities. Since hierarchies are not considered 
in the present chapter, we do not include these in 
our definition.

Figure 1. A data cube and the associated blocks
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Definition	1.	Cube:	A k-dimensional cube, or 
simply a cube, C is a tuple 〈dom1,..., domk, domm, 
mC〉 where:

• dom1,..., domk are k finite sets of symbols 
for the members associated with dimensions 
1,..., k respectively, 

• let dommes be a finite totally ordered set of 
measures. Let ⊥ be a constant (to represent 
null values). Then domm = dommes ∪ {⊥}

• mC is a mapping: dom1 ×...× domk → 
domm.

A cell c of a k-dimensional cube C is a (k + 1)-tuple 
〈v1,..., vk, m〉 such that for every i = 1,..., k, vi is in 
domi and where m = mC(v1,..., vk). m is called the 
content of c and c is called an m-cell. Moreover, 
for every i = 1,..., k, domi is called the domain of 
dimension di and an element vi in domi is called 
a member value.

We recall from Choong et al. (2003) that a given 
cube can be represented in several ways, based 
on the ordering of the member values in each set 
domi. For example, Figures 1 and 2 display two 
different representations of the cube C considered 
in Example 1. Although we do not consider the 
issue of computing particular representations, the 
notion of representation, as defined below, plays 
an important role in the present approach.

Definition	2.	Representation:A representation 
of a k-dimensional cube C is a set R = {rep1,..., 
repk} where for every i = 1,...,k, repi is a one-to-
one mapping from domi to {1,..., |domi|}.

In this chapter, we consider a fixed k-dimen-
sional cube C and a fixed representation of C, that 
we denote by R = {rep1,..., repk}.

Now, given a fixed representation of C, R = 
{rep1,..., repk}, for every dimension di, v1 and v2 
in domi are said to be contiguous if repi(v1) and 
repi(v2) are consecutive integers, i.e. if |repi(v1)- 
repi(v2)| = 1. Moreover, if repi(v1) ≤ repi(v2), the 
interval [v1;v2] is the set of all contiguous values 
between v1 and v2, i.e., [v1;v2] = {v ∈ domi | repi(v1) 
≤ repi(v) ≤ repi(v2)}.

blocks

In our approach, we define a block of C as fol-
lows:

Definition	3.	Block: A block b is a set of cells 
defined over a k-dimensional cube C by b = δ1 x...
x δk where δi are intervals of contiguous values 
from domi, for i = 1,..., k.

Note that in the previous definition a block 
is specified by exactly one interval per dimen-
sion. In the case where an interval would not be 
specified on a dimension di, the corresponding 
interval is set to [repi

-1 (1), repi
-1(|domi|)], which 

is denoted by ALLi.

PRODUCT

P4 8 8 8 2 2 2

P2 5 6 8 5 6 75

P1 8 6 6 5 5 2

P3 5 8 5 2 2 8

C3  C1  C2  C4 C5  C6 CITY

Figure 2. Another representation of the cube of Figure 1
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For example, if we consider the cube of Figure 
1, the interval [C1;C3] is associated with the block 
[C1;C3] × ALLPRODUCT where ALLPRODUCT is the 
interval [P4;P1].

Definition	4.	Block	Overlapping:	Two blocks 
b and b’ are said to overlap if they share at least 
one cell, i.e., if b ∩ b’ ≠  ∅.

It is easy to see that two blocks b = δ1  ×...  × 
δk and b’ = δ'1  ×...  × δ'k overlap if and only if for 
every dimension di, δi ∩ δ'i ≠  ∅. As stated in the 
following definition, in our formalism, a slice is 
defined as a particular block.

Definition	5.	Slice:	Let vi be a member value in 
domi. The slice of C associated with vi, denoted 
by T(vi), is the block δ1 × ... × δk such that δi = 
{vi}, and for all j ≠i, j = ALLj.

Given two member values v1 and v2 in the same 
domain domi, the slices T(v1) and T(v2), are said 
to be contiguous if v1 and v2 are contiguous, that 
is, if |repi(v1) – repi(v2)| = 1.

Referring to Figure 1, the slices T(P3) and T(P4) 
are contiguous since P3 and P4 are contiguous in 
the considered representation. It is important to 
note that the notion of contiguous cells (or slices) 
depends on the representation of the cube that is 
being considered. Indeed, two member values (or 
slices) can be contiguous in a given representation 
of C but not contiguous in another representation of 
C. For instance, considering the cube C of Example 
1, the member values C2 and C3 are contiguous 
in the representation of C displayed in Figure 1, 
but are not contiguous in the representation of C 
displayed in Figure 2.

We now define the following specificity rela-
tion between blocks of a given cube C.

Definition	6.	Specificity	relation: Let b = δ1 × ... 
× δk and b’ = δ'1 × ... × δ'k be two blocks. b’ is said 
to be more specific than b, denoted by b ∠ b', if 
for every i = 1,..., k, δi ≠ δ'i ⇒ δi = ALLi. 

For instance, in the cube of Figure 1, for b = 
[C1;C3] × ALLPRODUCT and b’ = [C1;C3] × [P3;P4], 

we have b ∠ b' since the intervals defining b and b' 
satisfy the above definition. It can be seen that the 
relation ∠ as defined above is a partial ordering 
over the set of all blocks of the cube C. Given a 
set of blocks B, the maximal (respectively mini-
mal) elements of B are said to be most specific 
(respectively most general) in B. Most specific 
blocks and most general blocks are called MS-
blocks and MG-blocks, respectively.

Moreover, it can be easily shown that if b and 
b' are two blocks such that b ∠ b', then b' ⊆ b. 

Support and Confidence of a Block

The support and the confidence of a given block 
b are defined according to the content of the cells 
in b. In order to comply with our discussion in 
the introductory section (see example 1), we 
consider three different criteria in this respect: 
(1) single measure values, (2) partition based 
measure values, and (3) fuzzy partition based 
measure values.

In order to define the support and the confi-
dence of a block for a given measure value, we 
introduce the following notation: let b be a block 
and m a measure value, Count(b, m) denotes the 
number of m-cells in b, and |b| denotes the total 
number of cells in b. In particular, |C| denotes the 
total number of cells in the whole cube C.

Definition	7.	Support:	The support of a block b 
from C for a measure value m is defined as: 

( , )( , ) count b msup b m
C

=

Considering a user-given minimum support 
threshold σ and a measure value m, a block b such 
that sup(b, m) > σ is called σ-frequent for m.

Definition	8.	Confidence:	The confidence of a 
block b for a measure value m is defined as:
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( , )( , ) count b mconf b m
b

=

As argued in the introductory section, considering 
separately all measure values present in the cube 
can lead to consider nonrelevant blocks, which will 
be very small. For instance, in a cube containing 
billions of cells and where the measure values 
range from 1 to 1,000 with very few repetitions, 
almost 1,000 values have to be considered sepa-
rately. Alternatively, in this case, 5 and 5.2 are 
likely to be considered as similar measure values 
and thus, should be processed as such.

In order to take this important point into 
account, we propose two ways to build blocks, 
based on intervals of measure values, on the one 
hand, and on fuzzy intervals, on the other hand. 
In these cases, the support and the confidence of 
a block are defined as follows.

Definition	9.	Interval	support	and	confidence:	
The interval support of a block b in C for a measure 
value interval [m1;m2] is defined as:

( ,[ 1, 2])_ ( ,[ 1, 2]) iCount b m mi sup b m m
C

=

where iCount(b, [m1;m2]) is the number of m-cells 
in b such that m ∈ [m1;m2]. Similarly, the interval 
confidence of b for [m1;m2] is defined as:

( ,[ 1, 2])_ ( ,[ 1, 2]) iCount b m mi conf b m m
b

=

When considering fuzzy intervals instead of 
intervals, counting cells in a block b with respect 
to a fuzzy interval j can be computed according 
to the following methods (Dubois, Hülermeier & 
Prade, 2003):

1. The Σ-count sums up the membership de-
grees of all cells of b.

2. The threshold-count counts those cells of b 
whose membership degree is greater than a 
user-defined threshold.

3. The threshold-Σ-count sums up those cell 
membership degrees that are greater than 
a user-defined threshold.

In what follows, given a fuzzy interval j and a 
cell c with content m, we denote by µ(c, j) the 
membership value of m in j. Moreover, given a 
block b, f

c b∈∑  (c, j) denotes the count of cells 
in b whose content is in j, according to one of 
the three counting methods mentioned above. In 
this case, the support and confidence of a block 
b are defined as follows.

Definition 10: Fuzzy Support and 
Confidence

The fuzzy support of a block b in C for a fuzzy 
interval j is defined as:

( , )_ sup( , ) fCount bf b
C

=

where:

(b, ) ( , )
f

c b
fCount c

∈

= ∑

Similarly, the fuzzy confidence of b for j is 
defined as:

( , )_ ( , ) fCount bf conf b
b

=

Properties

We first show that the support is anti-monotonic 
with respect to ∠, in either of the three cases 
defined above.
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Proposition 1: For all blocks b and b’ such that 
b ∠ b’, we have:

1. For every measure value m, sup(b’, m) ≤ 
sup(b, m).

2. For every interval [m1;m2], i_sup(b’, 
[m1;m2]) ≤ i_sup(b, [m1;m2]).

3. For every fuzzy interval j, f_sup(b’, j) ≤ 
f_sup(b, j).

• Proof: If  b and b’ are two blocks such that 
b ∠ b’ then we have that b’ ⊆ b. Moreover, 
in this case, we have Count(b, µ) ≤ Count(b’, 
µ), iCount(b, [m1;m2]) ≤ iCount(b’, [m1;m2]) 
and for every fuzzy counting method 
given above, fCount(b, j) ≤ fCount(b’, j). 
Therefore, the proposition follows from the 
definitions of the support, which completes 
the proof.

In our levelwise algorithm for computing blocks 
given in the next section, proposition 1 is used 
in the following way in the case of single mea-
sure values (the other two cases being similar): 
given a block b, a measure value m and a support 
threshold σ, b is not σ-frequent for m if there 
exists a block b’ such that b’ ∠ b and b’ is not 
σ-frequent for m.

The following proposition shows that the sup-
port (respectively confidence) of blocks based on 
intervals and fuzzy intervals are greater than the 
support (respectively confidence) blocks based 
on single values.

Proposition 2: For every block b and every mea-
sure value m, let m1 and m2 be measure values 
such that m ∈ [m1;m2], and let j be a fuzzy interval 
such that kernel(j) = [m1;m2]. Then, for any of the 
three fuzzy counting methods Σf, we have:

Count(b, m) ≤ iCount(b, [m1;m2]) ≤ fCount(b, j)

As a consequence:

• sup(b, m) ≤ i_sup(b, [m1;m2]) ≤ f_sup(b, j) 
and

• conf(b, m) ≤ i_conf(b, [m1;m2]) ≤ f_conf(b, 
j).

• Proof: For any cell c in b, if mC(c) = m then 
c contributes to 1 in Count(b, m), iCount(b, 
[m1;m2]) and fCount(b, j). Similarly, 
if mC(c) ≠ m but mC(c) ∈ [m1;m2] then c 
contributes to 1 in iCount(b, [m1;m2]) and 
fCount(b, j). Finally, if mC(c) ∉ [m1;m2] then 
it might be that c contributes to less than 1 
only in fCount(b, j). Therefore, the proof 
is complete.

AlGorIthMs

In this chapter, our goal is to discover blocks 
whose support and confidence are greater than 
user specified thresholds. To this end, our method 
is based on a levelwise Apriori-like algorithm 
(Agrawal, Imielinski, & Swami, 1993), for scal-
ability reasons. In this section, we first present 
the algorithms for the discovery of blocks in the 
case of single values, and then we show how the 
cases of (fuzzy) interval based measure values 
can be processed.

Roughly speaking, in the case of single mea-
sure values, our method works as follows: for every 
single measure value m in C do the following: 

1. For every i = 1,..., k, compute all maximal 
intervals I of values in domi such that, for 
every v in I, the slice T(v) is σ-frequent for 
m.

2. Combine the intervals in a levelwise manner 
as follows: at level l (2 ≤ l ≤ k), compute all 
σ-frequent blocks b = I1 x...x Ik such that ex-
actly l intervals defining b are different than 
ALL. Assuming that all blocks σ-frequent 
for m have been computed at the previous 
levels, this step can be achieved in much the 
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same way as frequent itemsets are computed 
in the algorithm Apriori.

3. Considering the set of all blocks computed 
in the previous step, sort out those that are 
not MS-blocks and those having a confidence 
for m less than γ.

It should be clear from definition 7 that a block can 
be frequent only if it contains at least σ.|C| cells. 
Similarly, it follows from definition 8 that, for a 
given confidence threshold γ, a block b is output 
only if it contains at least γ.|b| cells containing 
the measure value m. Therefore, when fixing the 
support and the confidence thresholds, the user 
actually determines thresholds concerning the 
size and the purity of the blocks the user wishes 
to obtain.

block Generation for single Measure 
values

In the following algorithms, MS- or MG-blocks 
are computed according to the user’s specification. 
Algorithm 1 performs step 1, while algorithm 2 
performs steps 2 and 3.

Referring to the cube of example 1, the sup-
ports for measure value 8 of all slices of the cube 
is displayed in Figure 3, while Figure 1 depicts 
all blocks output by algorithm 2. These blocks 
are defined as follows:

b1 = [P1; P2] x [C1;C1] for value 6, b2 = [P3; P4] 
x [C1;C3] for value 8
b3 = [P1; P3] x [C3;C4] for value 5, b4 = [P3; P4] 
x [C4;C6] for value 2

Note that there are two overlappings: one between 
b2 and b3, and one between b3 and b4.

Processing Interval-based blocks

In this section, we consider the computation of 
blocks when intervals and fuzzy intervals are 
considered, instead of single measure values. In 

this case, the following modifications must be 
made in the two algorithms given previously:

1. The supports and confidences must be 
computed accordingly. That is, in the case 
of interval based measure values, sup and 
conf must be replaced by i_sup and i_conf, 
respectively, and in the case of fuzzy interval 
based measure values, sup and conf must 
be replaced by f_sup and f_conf, respec-
tively.

2. In algorithm 2, the most outer loop must 
range over the set of intervals (fuzzy or not 
according to the considered case), instead of 
over the set of all single measure values.

On the other hand, when considering intervals or 
fuzzy intervals, a preprocessing task must be ap-
plied on the data in order to discretize the measure 
values into (fuzzy) intervals. This discretization 
process can be automatically performed, provided 
that the user defines the number of intervals she 
wants to consider.

Denoting by N this number of intervals, and 
assuming that mb (respectively mt) is the bottom 
value (respectively the top value) of the measure 
values, [mb;mt] can be divided into N intervals 
either in an equi-width manner (i.e., the widths of 
all intervals are equal), or in an equi-depth man-
ner (i.e., all intervals cover the same number of 
cells). These intervals are denoted by [boti;topi] 
for i = 1,...,N, and we note that for every i = 2,...,N, 
boti = topi - 1.

Then, in the case of fuzzy intervals, we con-
sider N trapezoidal membership functions μ1,..., 
μN such that:

• [bot1;top1] and [bot1;top2] are respectively 
the kernel and the support of μ1, 

• [botN;topN] and [botN-1;topN] are respectively 
the kernel and the support of μN, 

• [boti-1;topi+1] and [boti;topi] are respectively 
the support and kernel of μi, for i = 2,..., N-
1.
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Algorithm 1.

Figure 3. Occurences of measure value 8
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It should also be noted from proposition 2 that 
blocks based on intervals and fuzzy intervals of 
measure values are larger than blocks based on 
single values.

complexity Issues

In this section, we show that our method for com-
puting blocks is polynomial in time with respect 
to the size of the cube C, but not complete, in the 
sense that blocks that fulfill the threshold condi-
tions might not be output by our algorithms.

Let m be a measure value. In algorithm 1, the 
cube is scanned once for each dimension di. Thus, 
this step requires k scans of the cube C. Regard-
ing the complexity of algorithm 2, at each level, 
the whole cube is scanned at most once, since 
the intervals produced by algorithm 1 for a given 
measure value do not overlap. As in algorithm 

2, at most k iterations are processed, its execu-
tion requires at most k scans of the cube C. As 
a consequence, the computation of all frequent 
blocks associated to a given measure value m is 
in O(k.|C|). As computing the confidence of a 
block does not require the scanning of the cube 
(because the size of a block is the product of the 
sizes of the intervals defining this block), the time 
complexity of algorithm 2 is in O(k.|C|).

Hence, in the case of single measure values, the 
computation of all blocks is in O(k.|C|2), because 
C contains at most |C| distinct measure values. We 
note that although polynomial, the complexity of 
our method is not linear.

On the other hand, in the cases of (fuzzy) in-
tervals of measure values, if we denote by N the 
number of these intervals, then the computation of 
blocks is in O(k.|C|.N), that is, linear with respect 
to the size |C| of C. The experiments reported in 

Algorithm 2. Discovery of MS-blocks
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section 5 show the influence of the three factors 
(i.e., k, |C| and N) on the computation time.

As mentioned in the introductory section, 
the general problem of computing blocks of in 
a cube is known to be NP-hard, and the polyno-
mial method proposed in the chapter computes 
an approximation of the solution, meaning that 
our method is not complete. As an example, we 
recall from example 1 that the block b = [C1;C2] 
x [P1;P2] is not an output, although its support 
and confidence are greater than the support and 
confidence thresholds, respectively. This is due 
to the fact that the slice T(C2) is not frequent for 
6, which implies that the interval [C1;C2] is not 
computed by algorithm 1.

However, the following example shows that 
this is not the only reason for noncompleteness. 
More precisely, even if completeness would mean 
the computation of all blocks b such that, for a 
given measure value m:

1. sup(b, m) ≥ σ and conf(b, m) ≥ γ , and
2. (∀i = 1,..., k)(∀v ∈ δi)(sup(T(v), m) ≥ σ )

then example 2 shows that our method is not 
complete either.

Example 2: Consider the cube C as shown in 
Figure 4 in which blocks are to be computed 
according to support and confidence thresholds 
equal to 1/15 and 80%, respectively.

Using algorithm 1 for the measure value 8, we 
obtain the intervals [C1;C6] and [P1;P4] because 

all slices contain at least two 8-cells. However, 
since the confidence for 8 of the block [C1;C6] x 
[P1;P4] is equal to 12/24, which is less than 80%, 
this block is not computed by algorithm 2. On the 
other hand, it is easy to see that the two 8-blocks 
[C1;C3] x [P3;P4] and [C4;C6] x [P1;P2] satisfy 
the two items above.

In the next section, we study how to modify 
algorithm 1 so as to take into account situations 
as in example 2. Then we study the completeness 
of this modified method.

refInInG the coMPutAtIon of 
blocks

In this section, we take into account the cell neigh-
borhoods in order to enhance the completeness 
of our method. Intuitively, cells are considered as 
neighbors if they share one side in the representa-
tion. For instance, in Figure 4 the cells 〈P2, C3, 
5〉 and 〈P2, C4, 8〉 are neighbors.

cell neighborhood

Definition	11.	Neighbor: Two distinct cells c = 
〈v1,..., vk, m〉 and c’ = 〈v’1,..., v’k, m’〉 are neighbors 
if there exists a unique i0 in {1,..., k} such that:

• |repi0(vi0) - repi0(v’i0)| = 1 and
• for every i = 1,..., k such that i ≠ i0, vi = vi’.

PRODUCT

P1 5 5 5 8 8 8

P2 5 5 5 8 8 8

P3 8 8 8 6 6 6

P4 8 8 8 6 6 6

C1  C2  C3  C4 C5  C6 CITY

Figure 4. The cube for example 2
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We note that in a k-dimensional cube, a cell has 
at most 2.k neighbors. Moreover, considering a 
slice T(v) where v is a member value of the domain 
domi, we denote by v- and v+ the member values 
of domi such that repi(v-) = repi(v) - 1 and repi(v+) 
= repi(v) + 1, respectively.

Clearly, every cell c in T(v) has exactly one 
neighbor in each of the slices T(v-) and T (v+). 

As will be seen next, the refined computation 
of blocks requires to count, for every cell c, the 
number of neighbors of c that contain the same 
value. Clearly, this counting depends on whether 
we consider single measure values or intervals or 
fuzzy intervals. The following definition states 
how neighbors of a cell are counted in each of 
these cases.

In order to state this definition, we recall from 
Kaufmann (1973) that assessing the fact that the 
contents of two cells c and c’ both belong to a given 
fuzzy interval ϕ, denoted by (c, ϕ) ⊗ (c’, ϕ), can 
be done according to the following t-norms:

•	 Probalistic t-norm: μ ((c,(c, ϕ) ⊗ (c’, ϕ)) = μ (c,μ (c,(c, 
ϕ) . μ (c�,μ (c�,(c’, ϕ)

•	 Zadeh�s t-norm: μ ((c, ϕ) ⊗ (c’, ϕ)) = min(μ 
(c, ϕ) , μ (c�, ϕ))

•	 Lukasiewicz�s t-norm: μ ((c, ϕ) ⊗ (c’, ϕ)) = 
max(μ (c, ϕ) + μ (c�, ϕ) – 1 , 0)

Definition 12. Neighborhood counting: Let v 
be a member value.

1. If single measure values are considered, then 
for every such measure value m, we denote 
by n(v-, m), respectively n(v+, m), the number 
of m-cells in T(v) whose neighbor in T(v-), 
respectively in T(v+), is also an m-cell. Then 
neighbors(v-, m) and neighbors(v+, m) are 
defined as follows:

  
( , )( , )
( ( ), )

n v mneighbors v m
count T v m

−
− =   

and 

 
( , )( , )

( ( ), )
n v mneighbors v m

count T v m
+

+ =

2. If intervals of measure values are considered, 
then for every such interval [m1;m2], given 
a member value v, we denote by i_n(v-, 
[m1;m2]), respectively i_n(v+, [m1;m2]), 
the number of cells in T(v) whose content 
is in [m1;m2] and whose neighbor in T(v-), 
respectively in T(v+), is a cell whose content 
is in [m1;m2].

Then, i_neighbors(v-, [m1;m2]) and i_neighbors 
(v+, [m1;m2]) are defined as follows:

( -, [ 1; 2])( -, [ 1; 2])
( ( ), [ 1; 2])

i_n v m mi_neighbors v m m
i_count T v m m

=

and 

( , [ 1; 2])( , [ 1; 2])
( ( ), [ 1; 2])

i_n v m mi_neighbors v m m
i_count T v m m

+
+ =

3. If fuzzy intervals are considered, then 
given one of the above t-norms, a member 
value v and a fuzzy interval ϕ, we denote 
by f_neighbors(v-, ϕ) and f_neighbors(v+, 
ϕ) the following:

( )
( , ) ( , )

_ ( , )
( ( ), )

f

c T v
c c

f neighbors v
fCount T v

∈
⊗ −

− =
∑

and

( )
( , ) ( , )

_ ( , )
( ( ), )

f

c T v
c c

f neighbors v
fCount T v

∈
⊗ +

+ =
∑

where c- and c+ are the neighbors of c in T(v-) 
and T(v+), respectively.

Intuitively, neighbors(v-, m) and neighbors(v+, 
m) are respectively the ratios of m-cells in a given 
slice having m-cells as neighbors in the previousneighbors in the previous in the previous 
slice, respectively in the next slice. The same 
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remark also holds in the cases of intervals and 
fuzzy intervals.

Modified Computation of Blocks

Based on the notation previously introduced, our 
method works roughly as follows: We assume 
that, in addition to the support and confidence 
thresholds, we are given a new threshold called 
the neighbor threshold, denoted by ν. When scan-
ning dimension i for a given measure value m, 
let v be the member in domi of which the slice 
is being considered. If an interval of the form 
[V;NIL] where V ≠ NIL is under construction and 

if the support of T(v) is greater than the support 
threshold, then:

• If neighbors(v-, m) < ν, then the interval 
[V;v-] is output and the computation of the 
new interval [v;NIL] is considered.

• If neighbors(v+, m) < ν, then the interval 
[V;v] is output and the computation of the 
new interval [v+;NIL] is considered.

• Otherwise, the next slice, that is, the slice 
defined by v+, is considered for the interval 
[V;NIL].

Algorithm 3. 
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The corresponding algorithm is given below and 
is referred to as algorithm 3. In the remainder of 
the chapter, we call algorithm 2.1 the algorithm 
obtained from algorithm 2 by replacing algorithm 
1 with algorithm 3 for the computation of L1. It 
should also be clear that in the case of intervals 
(respectively fuzzy intervals) of measure values, in 
algorithm 3, sup and neighbors should respectively 
be replaced by i_sup and i_neighbors (respectively 
by f_sup and f_neighbors).

Example 3: We illustrate algorithm 3 using 
the cube of Figure 4 and we consider the same 
thresholds as in example 2, that is: σ = 1/15 and 
γ = 80%. Moreover, let the neighbor threshold ν 
be 60%.

In this case, for dimension CITY and measure 
value 8, algorithm 3 starts with [NIL;NIL] as the 
value for currentInterval and processes the first 
slice T(C1). As its support is greater than 1/12, 
and as j = 1, only n+ is computed, and is found 
equal to 1. Therefore the value of currentInterval 
is set to [1;NIL] and the next slice, that is, T(C2) 
is processed. In this case, n+ and n- are computed 
and both are found equal to 1. Thus, the slice 
T(C3) is processed.

At this stage, we find n- = 1 and n+ = 0. Since 
0 ≤ ν, the interval [C1;C3] is output, the value of 
currentInterval is set to [C4;NIL] and the slice 
T(C4) is processed. Now, we find n- = 0 and n+ 
= 1. As in this case, j = α in algorithm 3, no com-
putation is done and the slice T(C5) is processed, 

which does not lead to any change. Finally the 
processing of the slice T(C6) results in the interval 
[C4;C6], since |domCITY| = 6.

It can be seen that, for dimension PRODUCT 
and measure value 8, the computation is similar 
and outputs the two intervals [P1;P2] and [P3;P4]. 
Therefore, for measure value 8, we obtain L1(8) 
= {[C1;C3], [C4;C6], [P1;P2], [P3;P4]}.

Regarding the computation of the blocks, it is 
easy to see that, in this example, algorithm 2.1 
computes the two blocks [C1;C3] x [P3;P4] and 
[C4;C6] x [P1;P2], since their confidence is 1.

completeness Properties

In this section, we study the completeness of our 
approach in the case of single measure values. 
In particular, we show that if we consider a cube 
that can be partitioned into nonoverlapping blocks 
containing the same measure value, then algorithm 
2.1 computes these blocks.

First, we show that, for limit thresholds, our 
approach is complete for any cube C, in the sense 
that Algorithm 2.1 outputs blocks that represent 
exactly the content of C. In what follows, we call 
limit thresholds:

• A support threshold such that 0 ≤ σ < 
1/|C|,

• A confidence threshold such that γ = 1,
• A neighbor threshold such that ν = 1.

PRODUCT

P1 5 5 5 5 6 6

P2 5 8 5 5 6 6

P3 5 8 8 5 6 6

P4 8 8 8 8 6 6

C1  C2  C3  C4 C5  C6 CITY

Figure 5. The cube for example 4
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Before giving the corresponding theorem, we 
note that considering limit thresholds implies 
the following:

• A block b is frequent for m if and only if b 
contains at least one m-cell.

• A block b such that conf(b, m) > γ contains 
only m-cells.

• If in algorithm 3, L1(m) is computed accord-
ing to ν = 1, then for every m-cell c in a block 
b returned by algorithm 2.1, all neighbors 
of c that belong to b are also m-cells.

Now, the completeness of our approach can be stat-
ed as follows, in the case of limit thresholds.

Theorem � 

Let C be a k-dimensional cube. Then for limit 
thresholds, algorithm 2.1 outputs a set of blocks 
B such that for every cell c = 〈v1,..., vk, m〉 in C, 
there exists one and only one block b in B associ-
ated with m that contains c.

• Proof: Let us first consider a cell c = 〈v1,..., 
vk, m〉 in C. Since we assume that 0 ≤ σ ≤ 
1/|C|, every slice T(vi) is frequent for m. 
Therefore, according to algorithm 3, each vi 
is in an interval δi of L1(m). Let us consider 
the block b = δ1 x...x δk that, clearly, contains 
c.

 Since we assume limit thresholds, all neigh-
bors of c in b are m-cells, and thus, so are all 
cells of b. As a consequence, conf(b, m) = 1 
and thus b is output by algorithm 2.1, which 
shows that there exists at least one block b 
in B associated with m that contains c.

Assuming that two such blocks b and b’ can exist 
implies that b and b’ overlap and that they both 
contain only m-cells. However, this situation 
cannot happen because for any given measure 
value m, algorithm 3 computes nonoverlapping 
intervals. So, the proof is complete. 

We note that, although Theorem 1 shows an 
important theoretical feature of our approach, its 
impact in practice is of little relevance. Indeed, as 
shown in the following example, in the worst case, 
algorithm 2.1 outputs blocks that are reduced to 
one single cell. However, the following example 
also shows that, with realistic threshold values, 
our approach can compute relevant blocks, even 
if in C, the measure values are not displayed in 
the form of blocks.

Example 4: Let us consider the 2-dimensional 
cube C of Figure 5 and limit thresholds, for 
instance σ = 0 and γ = ν = 1. In this case, for 
measure values 5 and 8, algorithm 2.1 computes 
blocks that are reduced to one single cell, whereas 
for the measure value 6, algorithm 2.1 computes 
the block [C5;C6] x ALLPRODUCT .

To see this, let us consider the computation of 
L1(8) for dimension CITY. First, for σ = 0, every 
slice T(Ci), i = 1,...,6, is frequent for 8. Moreover, 
for all slices, neighbors(Ci-, 8) or neighbors(Ci+, 8) 
are less than 1. Therefore, algorithm 3 computes 
the intervals [Ci;Ci], for i = 1,..., 6. For dimension 
PRODUCT, a similar computation is produced 
and we obtain:

L1(8) = {[Ci;Ci] | i = 1,..., 6} ∪ {[Pj;Pj] | j = 1,..., 
4}

Then, when combining these intervals, algorithm 
2.1 outputs each 8-cell of C as a block.

It can be seen that a similar computation is 
done for the measure value 5, whereas, for measure 
value 6 the block [C5;C6] x ALLPRODUCT is returned 
by algorithm 2.1.

Now, we would like to emphasize that if 
we consider nonlimit thresholds, our approach 
computes relevant blocks, even in the case of this 
example. Indeed, let us consider as in example 2, 
σ = 1/15, γ = 80% and ν = 60%. Then, algorithm 
3 returns the following:

L1(5) = {[C1;C1], [C3;C4], [P1;P3]},
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L1(6) = {[C1;C1], [P1;P4]},
L1(8) = {[C2;C3], [P3;P4]}.

Applying algorithm 2.1, we obtain the following 
blocks:

• For measure value 5: [C1;C1] x [P1;P3] and 
[C3;C4] x [P1;P3].

• For measure value 6: [C5;C6] x [P1;P4].
• For measure value 8: [C2;C3] x [P3;P4].

We note that, in this case, two blocks overlap and 
that only two cells (namely 〈C2, P1, 5〉 and 〈C4, 
P4, 8〉) do not belong to any of these blocks.

Now, the following proposition shows that, 
when in C, measure values are displayed in 
the form of blocks, then algorithm 2.1 actually 
computes these blocks. To this end, we use the 
following terminology: a block b with all cells 
containing the same measure value m is called 
an m-block. Moreover, we introduce the notion 
of block partition as follows.

Definition	12.	Block	partition:	Let C be a k-
dimensional cube and B = {b1,..., bn} a set of 
blocks such that, for every i = 1,..., n, all cells of 
bi contain the same measure value mi. B is called 
a block partition of C if:

• For all distinct i and i’ in {1,..., n}, bi ∩ bi’ 
= ∅

• b1 ∪...∪ bn is equal to the set of all cells of 
C.

The block partition B = {b1,..., bn} of C is said to 
be maximal if for any measure value m, there 
does not exist an m-block in C that contains an 
m-block bi in B.

It is easy to see that, for the cube C of Figure 
3.3, the set B = {[C1;C3] x [P3; P4], [C4;C6] x [P1; 
P2], [C1;C3] x [P1;P2], [C4;C6] x [P3;P4]} is a 
maximal block partition of C in which [C1;C3] x 
[P3;P4] and [C4;C6] x [P1;P2] are two 8-blocks, 
[C1;C3] x [P1;P2] is a 5-block, and [C4;C6] x 
[P3;P4] is a 6-block.

Moreover, it can also be seen that, considering 
limit thresholds (e.g., σ = 0, γ = ν = 1), Algorithm 
2.1 computes exactly these blocks.

The following proposition generalizes this 
remark, and thus shows that our method is com-
plete when the cube can be maximally partitioned 
into m-blocks.

Proposition 3: Let C be a k-dimensional cube and 
let B = {b1,..., bn} be a maximal block partition 
of C. Assume that, for every measure value m, it 
is the case that for all m-blocks bi = δi,1 x...x δi,k 
and bj = δj,1 x...x δj,k in B, δi,p ∩ δj,p = ∅ for every 
p = 1,..., k. Then, for limit thresholds, algorithm 
2.1 returns B.

PRODUCT

P1 5 5 5 8 5 5

P2 5 5 5 8 5 5

P3 8 8 8 8 8 8

P4 5 5 5 5 5 8

C1  C2  C3  C4 C5  C6 CITY

Figure 6. The cube for example 5
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• Proof: We first note that theorem 1 shows 
that algorithm 2.1 computes sub-blocks of 
blocks in B. So, we have to show that for 
every m-block bi = δi,1 x...x δi,k in B, algorithm 
3 returns exactly each interval δi,p for every 
p = 1,..., k.

 Given one of these intervals for dimension p, 
say δi,p = [α,β], let us assume that algorithm 
3 returns an interval δ’i,p = [α’,β’] such that 
δ’i,p ⊂ δi,p.

 Hence, one of the following two inequali-
ties hold: repp(α) < repp(α’) or repp(β’) < 
repp(β). Assuming that repp(α) < repp(α’), 
let us consider the slice T(α’). According 
to our hypothesis on the intervals, bi is the 
only m-block in B that intersects T(α’). As 
a consequence, T(α’) contains at least one 
m-cell, and thus is frequent for m.

 Moreover, since bi is a block and since repp(α) 
< repp(α’), for every m-cell c = 〈v1,..., vp-1, 
α’, vp+1, vk, m〉 in T(α’), the cell c- = 〈v1,..., 
vp-1, v, vp+1, vk, m’〉 where v = rep-1

p(repp(α) 
- 1) is such that m = m’ (i.e., c- is an m-cell). 
Therefore, in algorithm 3, the value of n- for 
the slice T(α’) is 1, in which case no new 

interval is considered. Thus, we have α = 
α’. As it can be shown in the same way that 
β = β’, the proof is complete.

The following example shows that, if in the maxi-
mal partition B of C two m-blocks b = δ1 x...x δk 
and b’ = δ’1 x...x δ’k are such that δi ∩ δ’i ≠ ∅ for 
some i, then algorithm 2.1 does not compute B.

Example 5: Consider the cube C as shown in 
Figure 6 in which blocks are to be computed 
according to the limit thresholds. In this case, a 
maximal partition B of C is:
 
B = {[C1;C3] x [P1;P2], [C4;C4] x [P1;P2], 
[C5;C6] x [P1;P2], [C1;C6] x [P3;P3], [C1;C6] x 
[P4;P4]}.

It is clear that B does not satisfy the hypothesis of 
proposition 3, due, for instance, to the two 5-blocks 
[C1;C3] x [P1;P2] and [C1;C6] x [P4;P4].

On the other hand, running algorithm 2.1 on 
the cube C of Figure 6 does not produce B, since 
the 5-block [C1;C3] x [P4; P4] is split into [C4;C4] 
x [P4;P4] and [C5;C6] x [P4;P4] by the algorithm. 

Figure 7. Number of discovered blocks w.r.t. the numbers of dimensions
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Figure 8. Number of discovered blocks w.r.t. the numbers of members

Figure 9. Runtime w.r.t. the size of the cube

Figure 10. Runtime w.r.t. the size of the cube
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In fact, Theorem 1 shows that in this case, algo-
rithm 2.1 outputs a nonmaximal partition of C 
that refines B in the following sense: for every 
block b computed by algorithm2.1, there exists a 
block b’ in B such that b ⊂ b’.

It should be noticed that, in the case of inter-
vals, theorem 1 and proposition 3 still hold since 
pairwise disjoint intervals can be thought of as 
single values.

However, in the case of fuzzy intervals, we 
conjecture that our completeness results do not 
hold, because in this case, a member value v may 
belong to more than one interval. On the other 
hand, based on proposition 2, it is conjectured 
that blocks computed by our method still cover 
the whole cube C, i.e., it can be shown that:

1. For theorem 1, each cell belongs to at least 
one block in B, and

2. For proposition 3, algorithm 2.1 outputs 
super blocks of blocks in B.

exPerIMents

In this section, we report on experiments in terms 
of runtime, number of blocks, and rate of overlap-
ping blocks. Experiments have been performed on 
synthetic multidimensional data randomly gener-
ated. Depending on the experiments, the cubes 
contain up to 107 cells, the number of dimensions 
ranges from 2 to 9; the number of members per 
dimension ranges from 2 to 10, and the number 
of cell values ranges from 5 to 1000.

The first experiments report on the impact of 
taking into account single values, or intervals, or 
fuzzy intervals.

Figure 7 shows the number of blocks output 
by the three methods (single values, intervals, 
and fuzzy intervals) according to the number of 
dimensions, and Figure 8 shows the number of 
blocks output by the three methods (single values, 
intervals, and fuzzy intervals) according to the 
number of members per dimension.

It should be noted that we obtain more blocks 
based on intervals than blocks based on single 
values. This is due to the fact that taking intervals 

Figure 11. Rate of overlapping block w.r.t. the number of dimensions
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Figure 12. Runtime w.r.t. the number of measure values with and without neighbors (5 dimensions, 9 
members per dimension)

Figure 13. Number of blocks w.r.t. the number of measure values with and without neighbors (5 dimen-
sions, 8 members per dimension; v = 50%)

into account increases the chance for a value to 
match a block value. However, the number of 
blocks based on fuzzy intervals is lower than the 
number of blocks based on the other two methods. 
This is due to the fact that fuzzy blocks can merge 

several blocks (which would have overlapped, as 
shown below).

Figure 9 and Figure 10 show the runtime of 
the three methods (single values, intervals, fuzzy 
intervals) according to the size of the cube (number 
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of cells). It can be seen that taking intervals and 
fuzzy intervals into account leads to slightly 
higher runtimes, if compared with the case of 
single measure values. However, all runtimes are 
still comparable and behave the same way.

Figure 11 shows the rate of overlapping blocks 
depending on the method (single values, intervals 
of fuzzy intervals) according to the number of di-
mensions of the cube. This figure suggests that, in 
the case of this dataset, using crisp methods leads 
to the fact that many blocks overlap (100% in the 
case of this experiment), while taking fuzziness 
into account reduces the rate of overlapping. This 
fact could be put in relation with the impreci-
sion/uncertainty trade, that is, the more certain, 
the less precise and conversely.

We also conducted experiments in order to as-
sess the impact of taking neighbors into account. 
Figure 12 shows the behavior of the runtime 
according to the number of cell values. It can be 
seen that taking neighbors into account has no 
significant effect on the runtime.

Figure 13 shows the behavior of the number of 
blocks according to the number of measure values. 
It can be seen that taking neighbors into account 
leads to the discovery of more blocks.

We have also applied our method on the 
Titanic database (Blake, Newman, Hettich, & 
Merz, 1998). In this case, the database is organ-
ized according to four dimensions:

1. Dimension called PASSENGER CLASS 
and defined on domPASSENGER CLASS = {1st, 
2nd, 3rd, crew}.

2. Dimension called AGE and defined on 
 domAGE = {adult, child}
3. Dimension called SEX and defined on 
 domSEX = {male, female}
4. Dimension called SURVIVED and defined 

on domSURVIVED = {yes, no}

Moreover, we have considered a representa-
tion of the cube defined from the usual order as 

implicitly stated in the Titanic file (Blake et al., 
1998), that is:

• rep1(1st) < rep1(2nd) < rep1(3rd) < 
rep1(crew)

• rep2(adult) < rep2(child)
• rep3(male) < rep3(female)
• rep4(yes) < rep4(no)

The cube consists of 32 cells the content of which 
being the number of passengers concerned by the 
combination of one value per dimension. These 
numbers ranging from 0 to 670, we have parti-
tioned the interval [0;670] into the following four 
intervals: [0;0], ]0;20], ]20;192], ]192;670].

Considering the actual content of the cube, the 
first bin corresponds to no passenger, the second 
bin corresponds to numbers of passengers ranging 
from 4 to 20 (since there are no values between 0 
and 4), the third bin corresponds to numbers of 
passengers ranging from 35 to 192 (since there 
are no values between 20 and 35), and the last 
bin corresponds to numbers of passengers rang-
ing from 387 to 670 (since there are no values 
between 192 and 387).

We first note that, with a minimum confidence 
threshold of 50% and a minimum support thresh-
old of 2/32, taking single measure values into 
account has lead to the discovery of no block. On 
the other hand, with the same thresholds, when 
considering the intervals defined above, the fol-
lowing four blocks have been discovered:

1. b1 = ALLPASSENGERCLASS x [child;child] x 
ALLSEX x [no;no], a ]192;670]-block mean-
ing that the number of those passengers who 
were male children and who did not survive 
is among the highest.

2. b2 = [1st;3rd] x [adult;adult] x ALLSEX x 
ALLSURVIVED, a ]20;192]-block meaning that 
the number of those adult passengers who 
were not crew members, whatever their sex 
and whatever their fate (survived or not) was 
between 35 and 192.
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3. b3 = [1st;2nd] x [child;child] x ALLSEX x 
ALLSURVIVED, a ]0;20]-block meaning that 
the number of those children passengers 
belonging to class 1st or 2nd, whatever their 
sex and their fate (survived or not), was very 
low but not null.

4. b4 = [crew;crew] x [child;child] x ALLSEX 
x ALLSURVIVED, a [0;0]-block meaning that 
there were no children hired as crew mem-
bers.

relAted Work

The work on the building of blocks of similar 
values in a given data cube as presented in this 
chapter can be related to the work on data cluster-
ing of high dimensional data, which is an important 
area in data mining. For a large multidimensional 
database where the data space is usually not 
uniformly occupied, data clustering identifies 
the sparse and dense areas and thus discovers the 
overall distribution patterns (or summary) of the 
dataset. Some examples of work on clustering of 
high dimensional data include CLARANS (Ng 
& Han, 2002), BIRCH (Zhang, Ramakrishnan, 
& Livny, 1996), CLIQUE (Gunopulos, Agrawal, 
Gehrke, & Raghavan, 1998), and CURE (Guha, 
Rastagi, & Shim, 1998). Several subspace clus-
tering methods are introduced to detect clusters 
residing in different subspaces (i.e., subsets of the 
original dimensions). In this case, no new dimen-
sion is generated. Each resultant cluster is associ-
ated with a specific subspace. Some examples of 
these methods are CLIQUE (Gunopulos et al., 
1998) and ORCLUS (Aggrawal & Yu, 2000).

CLustering In QUEst (CLIQUE) adopts a 
density-based approach to clustering in which 
a cluster is defined as a region that has higher 
density of points than its surrounding area. To 
approximate the density of data points, the data 
space is partitioned into a finite set of cells. Note 
that a block in our work is almost similar to the 
concept unit in Gunopulos et al. (1998) which 

is obtained by partitioning every dimension 
into intervals of equal length. Thus a unit in the 
subspace is the intersection of an interval from 
each of the k dimensions of a k-dimensional 
cube. However, the construction of the blocks in 
Gunopulos et al. (1998) is not determined by the 
same measure value, but rather by arbitrary chosen 
partitions of the member values. Constructing 
subspaces using various methods can be viewed 
as related research but the aim is normally directed 
to tackling the issue of high dimensionality for 
clustering problems.

Research work on (fuzzy) image segmentation 
may appear as related works (Philipp-Foliguet, 
Bernardes, Vieira, & Sanfourche, 2002). Although 
the goals are the same, it is not possible to apply 
such methods due to problems of scalability and 
because also of the multidimensional nature of 
data. For example, clustering-based color image 
segmentation (Turi, 2001) is normally limited to 
a 2-dimensional environment with the possibility 
of an extension to 3 dimensions.

Segmentation methods (e.g., clustering) have 
been proposed in the multidimensional context 
(Ester, Kriegel, Sander, Wimmer, & Xu, 1998; 
Gunopulos 1998). In Gyenesei (2000), the author 
studies the generation of fuzzy partitions over 
numerical dimensions. However, these proposi-
tions are not related to our measure-based ap-
proach, and thus these propositions are different 
from our work where the measure value is the 
central criterion. On the other hand, the feature 
selection methods are used to select a subset of 
dimensions for supervised classification problem 
(Motoda & Huan, 1998). The idea is to produce 
an optimal pool of good dimension subsets for 
searching clusters. Therefore, in this approach, 
clusters are built up according to criteria related 
to dimensions whereas in our approach, blocks 
are built up according to similarity criteria on the 
measure values.

In Lakshmanan, Pei, and Han (2002) the au-
thors aim at compressing data cubes. However 
there is no consideration on cube representations 
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and homogeneous blocks generation. The work 
presented in Barbara and Sullivan (1997) proposes 
a method to divide cubes into regions and to rep-
resent those regions. However, the authors aim at 
representing the whole cube. They use statistical 
methods to construct an approximation of the 
cube, while we aim at discovering relevant areas, 
which may not cover the whole cube. In Wang, 
Lu, Feng, and Yu (2002), the authors propose 
the concept of condensed data cube. However, 
the authors aim at considering the cube without 
loss of information, while we aim at displaying 
relevant information to the user, which may be a 
partial representation of data.

conclusIon

In this chapter, we have presented an efficient 
method for summarizing and visualizing mul-
tidimensional data. In our approach, blocks of 
homogeneous data are built to summarize the 
content of a given data cube, based on user speci-
fied thresholds. We have used a levelwise approach 
for the computation of the blocks and we have 
shown that our approach is tractable, in particular 
when the set of measure values is partitioned into 
(fuzzy) intervals. Although efficiency results in a 
noncomplete method, completeness issues have 
been considered, and the experimental results 
obtained on synthetic  datasets show that relevant 
blocks can be obtained efficiently. 

In our future work, we plan to run further tests 
on real data to better assess the effectiveness and 
the accuracy of our approach. Moreover, we are 
also investigating the following research issues:

• How to combine the work in Choong et 
al. (2003) and the work presented in this 
chapter, in order to find a representation of 
the data cube for which large blocks can be 
computed?

• How standard OLAP operators such as 
roll-up or drill-down impact the blocks? 

More precisely, having built the blocks for 
a given level of details, can we optimize 
the construction of the blocks on the same 
data cube on which a roll-up or drill-down 
operation has been applied?

• The visualization of the blocks computed 
by our approach is also an issue we want to 
investigate further, based on our preliminary 
work reported in Choong et al. (2007).

note

This work is supported by the French Ministry of 
Foreign Affairs and French Council of Scientific 
Research (CNRS) under the STIC-Asia project 
EXPEDO framework.
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AbstrAct

This chapter describes social network mining from the Web. Since the end of the 1990s, several attempts 
have been made to mine social network information from e-mail messages, message boards, Web linkage 
structure, and Web content. In this chapter, we specifically examine the social network extraction from 
the Web using a search engine. The Web is a huge source of information about relations among persons. 
Therefore, we can build a social network by merging the information distributed on the Web. The growth 
of information on the Web, in addition to the development of a search engine, opens new possibilities to 
process the vast amounts of relevant information and mine important structures and knowledge.

IntroductIon

Social networks play important roles in our daily 
lives. People conduct communications and share 
information through social relations with others 
such as friends, family, colleagues, collaborators, 
and business partners. Social networks profoundly 

influence our lives without our knowledge of 
the implications. Potential applications of social 
networks in information systems are presented in 
Staab, Domingos, Mika, Golbeck, Ding, and Finin 
(2005). Examples include viral marketing through 
social networks (see also Leskovec, Adamic, & 
Huberman, 2005) and e-mail filtering based on 
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social networks.
A social network is a social structure compris-

ing nodes, which generally represent individuals 
or organizations. The structure reflects the ways in 
which they are connected through various social 
familiarities ranging from casual acquaintances 
to close familial bonds. Social network analysis 
(SNA) is a technique in sociology, by which a 
node is called an actor and an edge is called a 
tie. From the 1930’s, social network analysis has 
been applied to various kinds of relational data, 
which relate one agent to another; such data cannot 
be reduced to the properties of individual agents 
themselves (Scott, 2000). In contrast to the long 
history of SNA in sociology, research on complex 
networks has received much attention since 1998, 
led by researchers from statistical physics and 
computer science fields: D. Watts, A. Barabasi, 
and A. Newman.

Social networks have become familiar recently 
because of the increasing use and development 
of social networking services (SNSs). As a kind 
of online application, SNSs are useful to register 
personal information including a user’s friends and 
acquaintances; the systems promote information 
exchange such as sending messages and read-
ing Weblogs. Friendster1 and Orkut2 are among 
the earliest and most successful SNSs. Increas-
ingly, SNSs target focused communities such as 
music, medical, and business communities. In 
Japan, one large SNS has more than 7 million 
users, followed by more than 70 SNSs that have 
specific characteristics for niche communities. 
Information sharing on SNSs is a promising ap-
plication of SNSs (Goecks & Mynatt, 2004; Mori, 
Ishizuka, Sugiyama, & Matsuo, 2005) because 
large amounts of information such as private 
photos, diaries, and research notes are neither 
completely open nor closed: they can be shared 
loosely among a user’s friends, colleagues, and 
acquaintances. Several commercial services such 
as Imeem3 and Yahoo! 360°4 provide file sharing 
with elaborate access control.

In the context of the Semantic Web studies, 

social networks are crucial to realize a web of 
trust, which enables the estimation of informa-
tion credibility and trustworthiness (Golbeck & 
Hendler, 2004). Because anyone can say anything 
on the Web, the web of trust helps humans and 
machines to discern which contents are credible, 
and to determine which information is reliably 
useful. Ontology construction is also related 
to a social network. For example, if numerous 
people share two concepts, the two concepts 
might be related (Mika, 2005). In addition, when 
mapping one ontology to another, persons who 
are between the two communities, or those who 
participate in both, play an important role. Social 
networks enable us to detect such persons with 
high betweenness.

Several means exist to demarcate social 
networks. One approach is to compel users to 
describe relations to others. In studies of the social 
sciences, network questionnaire surveys are often 
performed to obtain social networks, for example, 
asking “Please indicate which persons you would 
regard as your friend.” Current SNSs realize such 
procedures online. However, the obtained rela-
tions are sometimes inconsistent: users do not 
name some of their friends merely because they 
are not in the SNS or perhaps the user has merely 
forgotten them. Some name hundreds of friends, 
but others name only a few. Therefore, deliberate 
control of sampling and inquiry are necessary to 
obtain high-quality social networks on SNSs.

In contrast, automatic detection of relations 
is possible from various sources of information 
such as e-mail archives, schedule data, and Web 
citation information (Adamic, Buyukkokten, & 
Adar, 2003; Miki, Nomura, & Ishida, 2005; Tyler, 
Wilkinson, & Huberman, 2003). Especially in 
some studies, social networks are extracted by 
measuring the co-occurrence of names on the 
Web. Pioneering work was done in that area by H. 
Kautz: the system is called Referral Web (Kautz, 
Selman, & Shah, 1997). Several researchers have 
used that technique to extract social networks, as 
described in the next section.

This chapter presents an overview of social 
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network mining from the Web. The growth of 
information on the Web plus the development of 
a search engine opens new possibilities to handle 
the vast relevant information and mine important 
structures and knowledge. Some basic algorithms 
are described along with advanced algorithms. 
Such algorithms are summarized and described 
in brief pseudocodes. Surprisingly, a few com-
ponents that use search engines comprise various 
algorithms. New aspects of social networks are 
investigated: classes of relations, scalability, and 
a person-word matrix.

This chapter is organized as follows. The 
following section describes the background and 
motivations. Then, we address basic algorithms to 
obtain social networks from the Web. Advanced 
algorithms are described next, including their 
evaluations. We discuss several important issues, 
and briefly overview some examples of social 
network applications. After describing future 
trends, we conclude this chapter.

bAckGround

In the mid-1990’s, Kautz and Selman developed 
a social network extraction system from the Web, 
called Referral Web (Kautz, Selman, & Shah, 
1997). The system particularly records co-oc-
currence of names on Web pages using a search 
engine. It estimates the strength of relevance of 
two persons, X and Y by putting a query “X and 
Y” to a search engine: If X and Y share a strong 
relation, we can find much evidence that might 
include their respective homepages, lists of co-
authors among technical papers, citations of 
papers, and organizational charts. The system 
automatically obtains a path from a person to a 
person (e.g., from Henry Kautz to Marvin Min-
sky). Later, with development of the WWW and 
Semantic Web technology, more information on 
our daily activities has become available online. 
Automatic extraction of social relations has much 
greater potential and demand now compared to 

when Referral Web was first developed.
Recently, P. Mika developed a system for ex-

traction, aggregation and visualization of online 
social networks for a Semantic Web community, 
called Flink (Mika, 2005)5. Social networks are 
obtained using analyses of Web pages, e-mail 
messages, and publications and self-created pro-
files (FOAF files). The Web mining component of 
Flink, similarly to that in Kautz’s work, employs 
a co-occurrence analysis. Given a set of names 
as input, the component uses a search engine to 
obtain hit counts for individual names as well as 
the co-occurrence of those two names. The system 
targets the Semantic Web community. Therefore, 
the term “Semantic Web OR Ontology” is added 
to the query for disambiguation.

Similarly, Y. Matsuo describes a social network 
mining system from the Web (Matsuo, Tomobe, 
Hasida, & Ishizuka, 2003; Matsuo, 2004; Mat-
suo, 2006). Their methods are similar to those 
used in Flink and Referral Web, but they further 
developed the processes to recognize different 
types of relations; they also addressed the scal-
ability. Their system, called Polyphonet, was 
operated at the 17th, 18th, 19th, and 20th Annual 
Conferences of the Japan Society of Artificial 
Intelligence (JSAI2003, JSAI2004, JSAI2005, and 
JSAI2006) and at The International Conference 
on Ubiquitous Computing (UbiComp 2005) to 
promote communication and collaboration among 
conference participants.

A. McCallum and his group (Bekkerman & 
McCallum, 2005; Culotta, Bekkerman, & Mc-
Callum, 2004) present an end-to-end system 
that extracts a user’s social network. That system 
identifies unique people in e-mail messages, finds 
their homepages, and fills the fields of a contact 
address book as well as the other person’s name. 
Links are placed in the social network between 
the owner of the Web page and persons discov-
ered on that page. A newer version of the system 
targets co-occurrence information on the entire 
Web, integrated with name disambiguation prob-
ability models.
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Other studies have used co-occurrence infor-
mation: Harada, Sato, and Kazama (2004) develop 
a system to extract names and person-to-person 
relations from the Web. Faloutsos, McCurley, 
and Tomkins (2004) obtain a social network of 
15 million persons from among 500 million Web 
pages using their co-occurrence within a window 
of 10 words. Knees, Pampalk, and Widmer (2004) 
classify artists into genres using co-occurrence 
of names and keywords of music in the top 50 
pages retrieved by a search engine. Some social 
networks on the Web have been investigated in 
detail: L. Adamic (2003) has classified the social 
network at Stanford and MIT students, and has 
collected relations among students from Web link 
structure and text information. Co-occurrence of 
terms in homepages can be a good indication to 
reveal communities. Analysis of FOAF networks 
is a new research topic. To date, a several studies 
have analyzed FOAF networks (Finin, Ding, & 
Zou, 2005; Mika, 2005). Aleman-Meza, Nagara-
jan, Ramakrishnan, Sheth, Arpinar, Ding, Kolari 
(2006) proposed the integration of two social 
networks: “knows” from FOAF documents and 
“co-author” from the DBLP bibliography. They 
integrate the two networks by weighting each 
relationship to determine the degree of conflict 
of interest among scientific researchers.

In the context of the Semantic Web, a study by 
Cimiano and his group is a very relevant work to 
this chapter. That system, pattern-based annota-
tion through knowledge on the Web (PANKOW), 
assigns a named entity into several linguistic pat-
terns that convey Semantic meanings (Cimiano, 
Handschuh & Staab, 2004; Cimiano & Staab, 
2004; Cimiano, Ladwig, & Staab, 2005). Onto-
logical relations among instances and concepts 
are identified by sending queries to a Google 
API based on a pattern library. Patterns that 
are matched most often on the Web indicate the 
meaning of the named entity, which subsequently 
enables automatic or semi-automatic annotation. 
The underlying concept of PANKOW, self-anno-
tating Web, is that it uses globally available Web 

data and structures to annotate local resources 
Semantically to bootstrap the semantic Web.

Most of those studies use co-occurrence 
information provided by a search engine as a 
useful way to detect the proof of relations. Use of 
search engines to measure the relevance of two 
words is introduced in a book, Google Hacks 
(Calishain & Dornfest, 2003), and is well known 
to the public. Co-occurrence information obtained 
through a search engine provides widely various 
new methods that had been only applicable to a 
limited corpus so far. The present study seeks the 
potential of Web co-occurrence and describes 
novel approaches that can be accomplished with 
surprising ease using a search engine.

We add some comments on the stream of 
research on Web graphs. Sometimes, the link 
structure of Web pages is seen as a social network: 
a dense subgraph is considered as a community 
(Kumar, Raghavan, Rajagopalan, & Tomkins, 
2002). Numerous studies have examined these 
aspects of ranking Web pages (on a certain topic), 
such as PageRank and HITS, and of identifying 
a set of Web pages that are densely connected. 
However, particular Web pages or sites do not 
necessarily correspond to an author or a group 
of authors. In our research, we attempt to obtain 
a social network in which a node is a person and 
an edge is a relation, that is, in Kautz’s terms, 
a hidden Web. Recently, Weblogs have come 
to provide an intersection of the two perspec-
tives. Each Weblog corresponds roughly to one 
author; it creates a social network both from a 
link-structure perspective and a person-based 
network perspective.

socIAl netWork MInInG froM 
the Web

This section introduces the basic algorithm that 
uses a Web search engine to obtain a social 
network. Most related works use one algorithm 
described in this section. We use the Japan Society 
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for Artificial Intelligence (JSAI) community as 
an example, and show some results on extracting 
the community.

nodes and edges

A social network is extracted through two steps. 
First we set nodes and then we add edges. Some 
studies, including Kautz’s and McCallum’s 
studies, have employed network expansion, sub-
sequently creating new nodes and finding new 
edges iteratively. Nodes in a social network are 
given in Polyphonet and Flink. In other words, a 
list of persons is given beforehand. Authors and 
co-authors who have presented works at past JSAI 
conferences are presupposed as nodes.

Next, edges between nodes are added using 
a search engine. For example, assume we are to 
measure the strength of relations between two 
names: Yutaka Matsuo and Peter Mika. We put 
a query:

Yutaka Matsuo AND Peter Mika

to a search engine. Consequently, we obtain 44 
hits.6 We obtain only 10 hits if we put another 
query Yutaka Matsuo AND Lada Adamic. Peter 
Mika itself generates 214 hits and Lada Adamic 
generates 324 hits. Therefore, the difference of hits 
by two names shows the bias of co-occurrence of 
the two names: Yutaka Matsuo is likely to appear 
in Web pages with Peter Mika than Lada Adamic. 
We can infer that Yutaka Matsuo has a stronger 
relationship with Peter Mika. Actually, the targets 
of this example, Yutaka Matsuo and Peter Mika 
participated together in several conferences.

That approach estimates the strength of their 
relation by co-occurrence of their two names. 
We add an edge between the two corresponding 
nodes if the strength of relations is greater than 
a certain threshold. Several indices can measure 
the co-occurrence (Manning & Sch{\”{u}}tze, 
2002): matching coefficient, nX∧Y; mutual in-
formation, log(nnX∧Y / nXnY); Dice coefficient, 

(2nX∧Y)(nx + nY); Jaccard coefficient, (nX∧Y / min(nx, 
nY); overlap coefficient, (nX∧Y / min(nx, nY); and 
cosine, ( / )X Y X Yn n∧ ∨ ; where nX and nY denote 
the respective hit counts of name X and Y, and 
nX∧Y and nX∧Y denote the respective hit counts of 
“X AND Y” and “X OR Y.”

Depending on the co-occurrence measure that 
is used, the resultant social network varies. Gen-
erally, if we use a matching coefficient, a person 
whose name appears on numerous Web pages 
will collect many edges. The network is likely 
to be decomposed into clusters if we use mutual 
information. The Jaccard coefficient is an appro-
priate measure for social networks: Referral web 
and Flink use this coefficient. In POLYPHONET, 
the overlap coefficient (Matsuo, 2004) is used 
because it fits our intuition well: For example, a 
student whose name co-occurs almost constantly 
with that of his supervisor strongly suggests an 
edge from him to that supervisor. A professor 
thereby collects edges from the students. The 
overlap coefficients are verified to perform well 
by investigating the co-authorship probability 
(Matsuo, Tomobe, Hasida, & Ishizuka, 2005).

Pseudocode that measures the co-occurrence 
of two persons is shown in Figure 1. In this paper, 
we define two functions in pseudocodes:

• GoogleHit: Returns the number of hits 
retrieved by a given query

• GoogleTop: Returns k documents that are 
retrieved by a given query

Those two functions play crucial roles in this 
chapter. CoocFunction is a co-occurrence index. 
In the case of the overlap coefficient, it is defined 
as the following.

if and
min( , )( , , )

0 otherwise

X Y
Y Y

X YX Y X Y

n n k n k
n nf n n n

∧

∧

 > >= 



We set k=30 for the JSAI case. Alternatively, we 
can use some techniques for smoothing.
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As shown in Figure 2, an alternative means 
exists to measure co-occurrence using a search 
engine: using top retrieved documents. NumEn-
tity returns the number of mentions in a given 
document set. NumCooc returns the number of 
co-occurrence of mentions in a given document 
set. Some related works employ this algorithm, 
in which we can use more tailored NLP methods. 
However, when the retrieved documents are much 
more numerous than k, we can process only a 
small fraction of the documents.

A social network is obtained using the algo-
rithm shown in Figure 3. For each node pair for 
which co-occurrence is greater than the threshold, 
an edge is invented. Eventually, a network G=(V,E) 
is obtained in which V is a set of nodes and E 
is a set of edges. Instead of using GoogleCooc, 
we can employ GoogleCoocTop in the case that 
documents are not so large and more detailed 
processing is necessary. If we want to expand 
the network one node at a time, we can insert 
a module shown in Figure 4 into the algorithm 
and iterate the module execution. The module, 
ExtractEntities, returns extracted person names 
from documents.

Although various studies have applied co-
occurrence using a search engine to extract a 
social network, most correspond to an algorithm 
described previously: most are surprisingly 
simple.

disambiguate a Person name

More than one person might have the same name. 
Such similarities of important information cause 
problems when extracting a social network. To 
date, several studies have produced attempts 
at personal name disambiguation on the Web 
(Bekkerman et al., 2005; Guha & Garg, 2004; 
Lloyd, Bhagwan, Gruhl, & Tomkins, 2005; 
Malin, 2005). In addition, the natural language 
community has specifically addressed name dis-
ambiguation as a class of word sense disambigu-
ation (Wacholder, Ravin, & Choi, 1997; Mann & 
Yarowsky, 2003).

Bekkerman and McCallum use probabilistic 
models for the Web appearance disambiguation 
problem (Bekkerman, 2005). The set of Web 
pages is split into clusters. Then one cluster can 
be considered as containing only relevant pages: 
all other clusters are deemed irrelevant. Li, Morie, 
and Roth (2005) propose an algorithm for the 
problem of cross-document identification and 
tracing of names of different types. They build 
a generative model of how names are sprinkled 
into documents.

These works identify a person from appear-
ance in the text when a set of documents is given. 
However, to use a search engine for social network 
mining, a good keyphrase to identify a person 
is useful because it can be added to a query. 
For example, we can use an affiliation (a name 
of organization one belongs to) together with a 

Figure 1. Measure co-occurrence using GoogleHit

Algorithm 3.1: GooGleCooC(X,Y)
comment: Given person names X and Y, return the co-occurrence.
nX ← GoogleHit(“X”)
nY ← GoogleHit(“Y”)
nX∧Y ← GoogleHit(“X Y”)
rX,Y ← CoocFunction(nX , nY , nX∧Y)
return (rX,Y)
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Figure 2. Measure co-occurrence using GoogleTop

Figure 3. Extract social network using GoogleCooc

Figure 4. Expand personal names

Algorithm 3.3: GetSoCialNet(L)
comment: Given person list L, return a social network G.
for each X ∈ L
  do set a node in G
for each X ∈ L and Y ∈ L
  do rX,Y  ← GoogleCooc(X,Y)
for each X ∈ L and Y ∈ L where rX,Y > threshold
  do set an edge in G
return (G)

Algorithm 3.2: GooGleCooCtop(X, Y, k)
comment: Given person names X and Y, return the co-occurrence.
DX ← GoogleTop(“X”, k)
DY ← GoogleTop(“Y”, k)
nX ← NumEntity(DX∪DY, X)
nY ← NumEntity(DX∪DY, Y)
nX∧Y ← NumCooc(DX∪DY, X, Y)
rX,Y ← CoocFunction(nX , nY , nX∧Y)
return (rX,Y)

Algorithm 3.4: expaNdperSoN(X, k)
comment: Extract person names from the retrieved pages.
D	←	GoogleTop(“X”,	k)
E	←	ExtractEntities(D)
return (E)

Figure 5. Measure co-occurrence with disambiguation

Algorithm 3.5: GooGleCooCCoNtext(X, Y, WX, WY)
comment: Given X, Y and word(s) WX, WY , return co-
occurrence.
nX ← GoogleHit(“X WX”)
nY ← GoogleHit(“Y WY”)
nX∧Y ← GoogleHit(“X Y WX WY”)
rX,Y ← CoocFunction(nX , nY , nX∧Y)

return (rX,Y)
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name. We make a query “X AND (A OR B OR 
…)” instead of “X” where A and B are affiliations 
of X (including past affiliations and short name 
for the affiliation). Flink uses a phrase semantic 
Web OR ontology for that purpose.

POLYPHONET uses a name-disambiguation 
module (Bollegara, Matsuo, & Ishizuka, 2006): 
for a person whose name is not common, such 
as Yutaka Matsuo, we need add no words; for a 
person whose name is common, we should add a 
couple of words that best distinguish that person 
from others. In an extreme case, for a person 
whose name is very common such as John Smith, 
many words must be added. The module clusters 
Web pages that are retrieved by each name into 
several groups using text similarity. It then outputs 
characteristic keyphrases that are suitable for 
adding to a query. A pseudocode, GoogleCooc-
Context, is used to query a search engine with 
disambiguating keyphrases, as shown in Figure 5. 
The code is slightly modified from GoogleCooc. 
We regard keyphrases to be added as implying 
the context of a person.

AdvAnced MInInG Methods

This section introduces some advanced algorithms 
for social network extraction.

class of relation

Various interpersonal relations exist: friends, 
colleagues, families, teammates, and so on. 
RELATIONSHIP (Davis) defines more than 30 
kinds of human relationships that often form a 
subproperty of the knows property in FOAF. For 
example, we can write “I am a collaborator of 
John (and I know him)” in our FOAF file. Various 
social networks are obtainable if we can identify 
such relationships. A person might possibly be 
central in the social network of a research com-
munity but not in the local community. Actually, 
such overlaps of communities often exist and 
have been investigated in social network analyses 
(Wasserman & Faust, 1994). This problem also 
invites interesting studies recently into the context 
of complex networks (Palla, Derenyi, Farkas, & 
Vicsek, 2005).

In POLYPHONET, the relations in a researcher 
community are targeted. Among them, four 
kinds of relations are picked up because of the 
ease at identifying them and their importance 
in reality:

• Co-author: co-authors of a technical pa-
per

• Lab: Members of the same laboratory or 
research institute

• Proj: Members of the same project or com-
mittee

Figure 6. Classify relation

Algorithm 4.1: ClaSSifyrelatioN(X, Y, k)
comment: Given personal names X and Y, return the class of 
relation.
DX∧Y ← GoogleTop(“X Y”, k)
for each d ∈ DX∧Y
  do cd	←	Classifier(c,	X,	Y)
class ← determine on cd (d∈DX∧Y)

return (class)
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• Conf: Participants in the same conference 
or workshop

Each edge might have multiple labels. For ex-
ample, X and Y have both “Co-author” and “Lab.” 
relations.

We first fetch the top five pages retrieved by 
the {X AND Y} query, that is, using GoogleTop(“X 
Y”, 5). Then we extract features from the content 
of each page, as shown in Table 1. Attributes 
NumCo, FreqX, and FreqY relate to the appear-
ance of name X and Y. Attributes GroTitle and 
GroFFive characterize the contents of pages us-
ing word groups defined in Table 2. We produced 
word groups by selecting high tf-idf terms using 
a manually categorized data set.

Figure 6 shows the pseudocode to classify rela-
tions. The classifier indicates any one classifier 

used in machine learning such as Naive Bayes, 
maximum entropy or support vector machine. In 
the JSAI case, C4.5 (Quinlan, 1993) is used as a 
classifier. Using more than 400 pages to which 
manually labels are assigned, classification rules 
are obtained. Some of those obtained rules are 
shown in Table 3. For example, the rule for co-au-
thor is simple: if two names co-occur in the same 
line, they are classified as co-authors. However, 
the lab relationship is more complicated.

Table 4 shows error rates of five-fold cross 
validation. Although the error rate for lab is 
high, others have about a 10% error rate or less. 
Precision and recall are measured using manual 
labeling of an additional 200 Web pages. The co-
author class yields high precision and recall even 
though its rule is simple. In contrast, the lab class 

Attribute Values

NumCo Number of co-occurrences of X and Y zero, one, or more_than_one

SampleLine Whether names co-occur at least once in the same line yes or no

FreqX Frequency of occurrence of X zero, one, or more_than_one

FreqY Frequency of occurrence of Y zero, one, or more_than_one

GroTitle Whether any of a word group A–F) appears in the title yes or not (for each group)

GroFFive Whether any of a word group (A–F) appears in the first five lines yes or not (for each group)

Table 1. Attributes and possible values

Group Words

A Publication, paper, presentation, activity, theme, award, authors, and so forth.

B Member, lab, group, laboratory, institute, team, and so forth.

C Project, committee

D Workshop, conference, seminar, meeting, sponsor, symposium, and so forth.

E Association, program, national, journal, session, and so forth.

F Professor, major, graduate student, lecturer, and so forth.

Table 2. Word groups (translated from Japanese)
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Class Rule

Co-author SameLine=yes

Lab (NumCo = more_than_one & GroTitle(D)=no & GroFFive(A) = yes & GroFFive(E) = yes )
& or (FreqX = more_than_two & FreqY = more_than_two & GroFFive(A) = yes & GroFFive(D)=no) or ...

Proj (SameLine=no & GroTitle(A)=no & GroFFive(F)=yes) or .. 

Conf (GroTitle(A)=no & GroFFive(B)=no & GroFFive(D)= yes )
& or (GroFFive(A)=no & GroFFive(D)=no & GroFFive(E) = yes) or .. 

Class Error rate Precision Recall

Co-author 4.1% 91.8% (90/98) 97.8% (90/92)

Lab 25.7% 70.9% (73/103) 86.9% (73/84)

Proj 5.8% 74.4% (67/90) 91.8% (67/73)

Conf 11.2% 89.7% (87/97) 67.4% (87/129)

Table 3. Obtained rules

Table 4. Error rates of edge labels, precision and recall

gives low recall, presumably because laboratory 
pages have greater variety.

Obtaining the class of relationship is reduced 
to a text categorization problem. A large amount 
of research pertains to text categorization. We can 
employ more advanced algorithms. For example, 
using unlabeled data also improves categoriza-
tion (Nigram, McCallum, Thrun, & Mitchell, 
1999). Relationships depend on the target domain. 
Therefore, we must define classes to be categorized 
depending on a domain.

Vastly numerous pages exist on the Web. For 
that reason, the ClassifyRelation module becomes 
inefficient when k is large. Top-ranked Web pages 
do not necessarily contain information that is 
related to the purpose. One approach to remedy 
that situation is to organize a query in a more 
sophisticated manner. For example, if we seek to 
determine whether X and Y have Lab relations, we 
can organize a query such as “X Y (publication OR 

paper OR presentation)” through consultation of 
Tables 2 and 3. This algorithm works well in our 
other study for extraction of a social network of 
corporations (Jin, Matsuo, & Ishizuka, 2006). In 
Question-Answering systems, query formulation 
is quite a common technique.

scalability

The number of queries to a search engine becomes 
a problem when we apply extraction of a social 
network to a large-scale community: a network 
with 1,000 nodes requires  1000 2C ≈ 500,000 queries 
and grows with O(n2), where n is the number of 
persons. Considering that the Google API limits 
the number of queries to 1,000 per day, the number 
is huge. Such a limitation might be reduced gradu-
ally with the development of technology, but the 
number of queries remains a great obstacle.
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One solution might be that social networks 
are often very sparse. For example, the network 
density of the JSAI2003 social network is 0.0196, 
which means that only 2% of possible edges actu-
ally exist. The distribution of the overlap coef-
ficient is shown in Figure 7. Most relations are 
less than 0.2, which is below the edge threshold. 
How can we reduce the number of queries while 
simultaneously preserving the extraction perfor-
mance? One idea is to filter out pairs of persons 
that seem to have no relation. That pseudocode is 
described in Figure 8. This algorithm uses both 

good points of GoogleCooc and GoogleCoocTop. 
The latter can be executed in computationally 
low order (if k is a constant), but the former gives 
more precise co-occurrence information for the 
entire Web.

For 503 persons who participated in JSAI2003, 
503C2=126253 queries are necessary if we use the 
GetSocialNet module. However, GetSocialNetS-
calable requires only 19,182 queries in case k=20, 
empirically, which is about 15%. The degree to 
which the algorithm filters out information cor-
rectly is shown in Figure 9. For example, where 

Figure 7. Number of pairs versus the overlap coefficient

Algorithm 4.2: GetSoCialNetSCalable(L, k)
comment: Given person list L, return a social network G.
for each X ∈ L
  do set a node in G
for each X ∈ L and Y ∈ L
  do 
 D ← GoogleTop(“X”, k)
 E ← ExtractEntities(D)
 for each Y ∈	L∩E
 do rX,Y  ← GoogleCooc(X,Y)
for each X ∈ L and Y ∈ L where rX,Y > threshold
  do set an edge in G
return (G)

Figure 8. Extract the social network in a scalable manner
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k=20, 90% or more of the relations with an overlap 
coefficient 0.4 are detected correctly. It is read-
ily apparent that as k increases, the performance 
improves. As an extreme case, we can set k=∞ 
and thereby achieve 100%.

The computational complexity of this algo-
rithm is O(nm), where n is the number of persons 
and m is the average number of persons that re-
main candidates after filtering. Although m can 
be a function of n, it is bounded depending on k 
because a Web page mentions a certain number 
of person names in a typical case. Therefore, 
the query number is reduced from O(n2) to O(n), 
enabling us to crawl a social network as large as 
n=7000.7

name and Word co-occurrence

Personal names co-occur along with many words 
on the Web. A particular researcher’s name will 
co-occur with many words that are related to 
that person’s major research topic. Below, we 
specifically address the co-occurrence of a name 
and words.

Keyword Extraction

Keywords for a person, in other words personal 
metadata, are useful for information retrieval and 
recommendations on a social network. For exam-
ple, if a system has information on a researcher’s 
study topic, it is easy to find a person of a certain 
topic on a social network. PANKOW also provides 
such keyword extraction from information on a 
person’s homepage (Culotta et al., 2004).

Keyword extraction for researchers is imple-
mented in POLYPHONET. A ready method to 
obtain keywords for a researcher is to search a 
person’s homepage and extract words from the 
page. However, homepages do not always exist 
for each person. Moreover, a large amount of 
information about a person is not recorded in 
homepages, but is instead recorded elsewhere in 
conference programs, introductions in seminar 
Webpages, profiles in journal papers, and so 
forth. For those reasons, POLYPHONET uses 
co-occurrence information to search the entire 
Web for a person’s name.

We use co-occurrence of a person’s name and 
a word (or a phrase) on the Web. The algorithm 
is shown in Figure 10. Collecting documents 
retrieved by a personal name, we obtain a set of 

Figure 9. Coverage of GetSocialNetScalable for the JSAI case



  ���

Social Network Mining from the Web

words and phrases as candidates for keywords. 
Termex (Nakagawa, Maeda & Kojima, 2003) is 
used for term extraction in Japanese as Extract-
Words. Then, the co-occurrence of the person’s 
name and a word / phrase is measured. This al-
gorithm is simple but effective. Figure 12 shows 
an example of keywords for Dan Brickley. He 
works with XML/RDF and metadata at W3C 
and ILRT; he created the FOAF vocabulary along 
with Libby Miller. Some important words, such as 
FOAF and Semantic Web, are extracted properly. 
Table 5 shows the performance of the proposed 
algorithm based on a questionnaire. Both tf and 
tf-idf are baseline methods that extract keywords 
from DX. In the tf-idf case, by collecting 3981 

pages for 567 researchers a corpus is produced. 
For ExtractKeywords, we set k1=10 and k2=20 (as 
similarly as tf and tf-idf). We gave questionnaires 
to 10 researchers and defined the correct set of 
keywords carefully. For details of the algorithm 
and its evaluation, see Mori et al. (2005). The 
tf outputs many common words: tf-idf outputs 
very rare words because of the diversity of Web 
document vocabularies. The proposed method is 
far superior to that of the baselines.

Affiliation Network

Co-occurrence information of words and persons 
forms a matrix. Figure 12 shows a person-word co-

Algorithm 4.3: extraCtKeywordS(X, k1, k2)
D ← GoogleTop(“X”, k1)
words	←	ExtractWords(D)
for each W ∈ words
  do scoreW	←	GoogleCooc(X,	W)
K	←	{	W|	scoreW  is top k2}}
return (K)

Figure 10. Extract keywords for a person

Dan Brickley
Libby Miller
FOAF
Semantic Web
Dave Beckett
RDFWeb
ILRT

Dan Connolly
Jan Grant
RDF Interest Group
xmlns.com=foaf
RDF
Eric Miller
FOAF Explorer

Method tf tf-idf ExtractKeywords

precision 0.13 0.18 0.60

recall 0.20 0.24 0.48

Figure 11. Exemplary keywords for Dan Brickley

Table 5. Precision and recall
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occurrence matrix, which represents how likely a 
person’s name is to co-occur with other words on 
the Web. In social network analysis literature, this 
matrix is called an affiliation matrix whereas a 
person-person matrix is called an adjacent matrix 
(Wasserman et al., 1994). Figure 13 presents an 
example of a person-to-word matrix obtained in 
POLYPHONET. For example, the name of Mitsuru 
Ishizuka co-occurs often with words such as agent 
and communication. Koiti Hasida co-occurs often 
with communication and cognition. Conceptually 
speaking, by measuring the similarity between 
two-word co-occurrence vectors (i.e., two rows of 
the matrix), we can calculate the similarity of the 
two people’s contexts. In the researchers’ cases, 
we can measure how mutually relevant the two 
researchers’ research topics are: if two persons are 
researchers of very similar topics, the distribution 
of word co-occurrences will be similar.

Figure 14 describes the pseudocode for calcu-
lating the context similarity of two persons. We 
should prepare a word / phrase list WL, which is 
a controlled vocabulary for the purpose, because 
rare words do not contribute greatly to the simi-
larity calculation. In POLYPHONET, we obtain 
188 words that appear frequently (excluding stop 
words) in titles of papers at JSAI conferences. 
Actually, the affiliation matrix is stored for a list 
of persons and a list of words before calculating 

similarity to avoid inefficiency. Popular words 
such as agent and communication co-occur often 
with many person names. Therefore, statistical 
methods are effective: We first apply χ2 statistics 
to the affiliation matrix and calculate cosine 
similarity (Chakrabarti, 2002).

One evaluation is shown in Figure 15. Based 
on the similarity function, we plot the probability 
that the two persons will attend the same session at 
a JSAI conference. We compare several similarity 
calculations: χ2 represents using the χ2 and cosine 
similarity, the idf represents using idf weighting 
and cosine similarity, and hits represents the use 
the hit count as weighting and cosine similarity. 
This session prediction task is very difficult and its 
precision and recall are low: among the weighting 
methods, χ2 performs best.

A network based on an affiliation matrix is 
called an affiliation network (Wasserman et al., 
1994). A relation between a pair of persons with 
similar interests or citations is sometimes called 
an intellectual link. Even if no direct mutual 
relation exists, we infer that they share common 
interests, implying an intellectual relation, or a 
potential social relationship.

 W1 W 2 W 3 …  W m 

X1    …   

X2    …   

X3    …   

… … … … … … 

Xn    …   

 X1 X 2 …  X M 

X1   …  

X2   …  

X3   …  

… … … … … 

Xn   …  

Figure 12. Affiliation matrix and adjacent matrix
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Agent Mining Communication Audio Cognition …

Mitsuru Ishizuka 454 143 414 382 246 …

Koiti Hasida 412 156 1020 458 1150 …

Yutaka Matsuo 129 112 138 89 58 …

Nobuaki Minematsu 227 22 265 648 138 …

Yohei Asada 6 6 6 2 0 …

… … … … … … …

Figure 13. Example of a person-to-word co-occurrence matrix

Algorithm 4.4: CoNtextSim(X, Y, WL)
comment: Given names X, Y and word list WL, return the similarity.
for each W ∈ WL
do
  aW	←	GoogleCooc(X,W)
  bW	←	GoogleCooc(Y,W)
sX,Y	←	similarity of two vectors a	=	{aW} and	b	=	{bW}
return (sX,Y)

Figure 14. Measure contextual similarity of two persons

Figure 15. Precision and recall for session identification
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Important Issues

Entity Identification

In the field of artificial intelligence, various forms 
of Semantic representation have been speculated 
upon for decades, including first-order predicate 
logic, Semantic networks, frames, and so on. Such 
a representation enables us to describe relations 
among objects; it is useful for further use of the 
Web for integration of information and inference. 
On the other hand, studies of social network analy-
ses in sociology provide us a means to capture the 
characteristics of a network as an integration of 
relations. For example, the concept of centrality 
quantifies the degree to which a person is central 
to a social network. A measure of centrality, that 
is, the degree to which a researcher is central to a 
research community, sometimes correlates with 
other measures of an individual’s characteristics or 
achievements, e.g., their number of publications. 
Social networks (and their individual relations) 
are defined properly in terms of a certain purpose 
if the correlation is high. Such feedback from an 
extracted network to individual relations is im-
portant when we target extraction of a large-scale 
social network from the Web.

In accordance with that concept, the following 
points are important for the further development 
of an algorithm:

•	 Scalability: Using very simple modules 
with a search engine to attain scalability.

•	 Relate-identify	 process: For identifying 
entities8 and extracting relations of entities, 
more advanced algorithms are necessary: 
Based on the overall network structure and 
statistics, we improve the means to identify 
entities.

To attain scalability, we allow two operations us-
ing a search engine: GoogleTop and GoogleCooc. 
These two are permissible operations even if the 
Web grows more. GoogleTop enables us to inves-
tigate a small set of samples of Web pages using 

text processing, whereas GoogleCooc provides 
statistics that pertain to the entire Web. We note 
that as the Web grows, GoogleTop returns fewer 
and fewer Web pages relative to all retrieved 
documents, thereby rendering it less effective. 
A more effective means to sample documents 
from the Web must be developed, as described 
in (Anagnostopoulos, Broder & Carmel, 2005). 
In contrast, GoogleCooc yields a more precise 
number if the Web grows because the low-fre-
quency problem is improved. Therefore, a good 
combination of GoogleCooc and GoogleTop is 
necessary for Super Social Network Mining. For 
other kinds of operations by a search engine such 
as “obtain the number of documents where word 
X co-occurs with Y within the word distance of 
10,” whether they are permissible or not remains 
unclear in terms of scalability because the index 
size grows very rapidly. A search engine that is 
specially designed for NLP (Cafarella & Etzioni, 
2005) will benefit our research importantly if it 
actually scales properly.

Integration of Social Networks

Some flaw would hinder any method we might 
take for obtaining a social network. For example, 
SNSs data and FOAF data, which are based on 
self-report surveys, suffer from data bias and 
sparsity. Users might name some of their work 
acquaintances, but would not include private 
friends. Others might name hundreds of friends, 
but others would name only a few. Automatically 
obtained networks, for example, Web-mined 
social networks, would provide a good view of 
prominent persons, but would not work well for 
novices, students, and other “normal” people. 
Social networks observed using wearable devices 
(Pentland, 2005) are constrained using their 
device-specific characteristics; they might have 
detection errors, limited detection scopes, and 
the bias of usage.

How can we integrate multiple social networks? 
In social network analysis, a network is called a 
multi-plex graph in which actors are connected 



  ���

Social Network Mining from the Web

in multiple ways simultaneously (Hanneman & 
Riddle, 2005). Several techniques are available to 
reduce the multiple network matrices into one: we 
can use sum, average, maximum, multiplication 
for each corresponding element of the matrices.

In typical social science studies, a social net-
work is obtained according to survey purposes. 
Otherwise, a network is only a network that 
represents nothing. In the context of the Seman-
tic Web, social networks are useful for several 
purposes:

• Locating experts and authorities (Mika, 
2005; Matsuo et al., 2004)

• Calculating trustworthiness of a person 
(Golbeck & Hendler, 2005; Goldbeck & 
Persia, 2006; Massa & Avesani, 2005)

• Detecting relevance and relations among 
persons, for example, COI detection (Ale-
man-Meza et al., 2006)

• Promoting communication, information 
exchange and discussion (Matsuo et al., 
2006)

• Ontology extraction by identifying com-
munities (Mika, 2005)

To locate experts and authorities, it is useful to 
use a collaborator network and calculate centrali-
ties based on the network. Correlation to research 
performance, for example, publication and cita-
tion, is used to measure whether the network is 
appropriate or not. To calculate trustworthiness 
and aggregate information, the knows relation 
works well because of its inherent requirement 
of an explicit declaration.

For promoting communication and finding 
referrals, knows links are useful: a person is likely 
to introduce friends to others if one explicitly de-
clares knowing some of his friends. Meets links 
are also useful, which is a relation through face-to-
face interaction detected by wearable devices and 
ubiquitous sensors (Matsuo et al., 2006, Pentland, 
2005). The meets link is a key because a person 
actually meets others on-site; the person feels at 

ease talking again to introduce someone.
For (light-weight) ontology extraction, it is 

important to detect the community precisely under 
consistent criteria. In that sense, the collaborator 
network is the best in an academic context. Inte-
gration of collaborator plus knows might improve 
the result because it increases the probability that 
the two are in the same community.

In summary, integration of multiple social 
networks depending on purposes is an important 
issue; some methodology is necessary for further 
utilization of social networks.

socIAl netWork AnAlysIs

Once we obtain a social network, we can analyze 
the network structure in various ways. A major 
analysis in social network analysis is calculating 
the centrality of each actor. Sometimes (for ex-
ample in the case of a network of Web pages) it 
can be considered as the authoritativeness of the 
node. On the other hand, an egocentric network 
is used to calculate trust that can be accorded to 
a person. This section first describes these two 
kinds of authoritativeness, then various applica-
tions using a social network, using information 
recommendation, information sharing, and 
navigation.

Authoritativeness

Freeman (1979) proposes a number of ways to 
measure node centrality. Considering an actors’ 
social network, the simplest means to determine 
centrality is to count the number of others with 
whom an actor maintains relations. The actor 
with the most connections, for example, the high-
est degree, is most central. Another measure is 
closeness, which calculates the distance from each 
person in the network to another person based 
on the connections among all network members. 
Central actors are closer to all others than are other 
actors. A third measure is betweenness, which 
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examines the extent to which an actor is situated 
between others in the network, that is, the extent 
to which information must pass through them to 
get to others, and thus the extent to which they 
will be exposed to information that circulates 
through the network.

The Google9 search engine uses the link struc-
ture for ranking Web pages, called PageRank (Brin 
& Page, 1998). A page has a high rank if the sum 
of the ranks of its backlinks is high. The rank of a 
page is divided among its forward links evenly to 
contribute to the ranks of the pages they point to. 
PageRank is a global ranking of all Web pages; 
it is known to perform very well.

The PageRank model is useful to measure 
authoritativeness of each member. Each node v 
has an authority value An(v) on iteration n. The 
authority value propagates to neighboring nodes 
in proportion to the relevance to the node:
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where Neighbor(v) represents a set of nodes, each 
of which is connected to node v, c is a constant, 
and E represents a source of authority value. We 
set E as uniform over all nodes (for mathematical 
details, see Brin & Page, 1998).

Table 6 shows a result applied to the JSAI 
community extracted from the Web. Among 1,509 
people in the community, these people have a high 
authority value A(v) after 1,000 iterations. Present 
or former commissioners of JSAI comprise 9 of 
15 people. Others are younger: they are not yet 
commissioners, but are very active researchers 
who are mainly working in JSAI.

The top listed people by this algorithm are 
authoritative and reliable in the JSAI community. 
However, authoritative people are not always 

listed highly by our approach. For example, JSAI 
currently has 20 commissioners (including a 
chairperson and two vice chairpersons), but we 
can extract only 5 current commissioners of the 
top 15. In other words, this approach seems to have 
high precision, but low recall, which is attributable 
to the lack of information online. Especially, elder 
authorities tend to have made many publications 
before the WWW came into daily use.

Table 7 shows a list of people that was created 
by calculating the PageRank by setting a source 
node to one person: Yutaka Matsuo. Similarly, we 
can calculate the importance of other persons to 
that person. In other words, that list is a proxy of 
individual trust by the person. This corresponds to 
the algorithm mentioned in Brin and Page (1998) 
as a personalized ranking of Web pages.

The PageRank algorithm performs better than 
other measures including degree, closeness, and 
the number of retrieved pages. For example, by 
measuring the number of retrieved pages, a famous 
person tends to be ranked highly irrespective of 
their contribution to the community. This mea-
sure is insufficient for our purposes because we 
want to know the authoritativeness in the target 
community. Alternatively, we can measure the 
topic-sensitive PageRank (Haveliwala, 2002) of 
one’s homepage as that person’s authoritativeness. 
However, the connection between authority of a 
person and authority of a homepage is not clear; 
some pages have high PageRanks because their 
contents are popular, not because authorities have 
written them.

Applications

We next describe the algorithm used to calculate 
authoritativeness of a node. A related but differ-
ent concept is the trust value of a node: The trust 
calculation in social networks has been addressed 
in several studies. The EigenTrust algorithm is 
used in peer-to-peer systems and calculates trust 
using a variation on the PageRank algorithm 
(Kamvar, Schlosser, & Garcia-Molina, 2003) 
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Name Activation Freq. Comment10

1 Toyoaki Nishida 5.53 624 Former Commissioner of JSAI, Prof. 

2 Toru Ishida 4.98 574 Former Commissioner of JSAI, Prof. 

3 Hideyuki Nakashima 4.52 278 Former Commissioner of JSAI

4 Koiti Hasida 4.50 345 Commissioner of JSAI

5 Mitsuru Ishizuka 4.24 377 Commissioner of JSAI, Prof.

6 Hiroshi Okuno 3.89 242 Commissioner of JSAI, Prof.

7 Riichiro Mizoguchi 3.60 404 Commissioner of JSAI, Prof.

8 Seiji Yamada 3.35 168 Associate Prof.

9 Hideaki Takeda 3.22 435 Associate Prof.

10 Takahira Yamaguchi 3.10 236 Prof.

11 Yukio Ohsawa 2.98 185 Associate Prof.

12 Hozumi Tanaka 2.90 465 Chairperson of JSAI, Prof.

13 Takenobu Tokunaga 2.89 302 Associate Prof.

14 Koichi Furukawa 2.77 141 Former Commissioner of JSAI, Prof.

15 Tatsuya Kawahara 2.74 440 Prof.

Name Activation Freq Comment

1 Yutaka Matsuo 230.6 136 Himself

2 Mitsuru Ishizuka 28.7 377 His former supervisor, co-author

3 Yukio Ohsawa 19.5 185 His former project leader, co-author

4 Toyoaki Nishida 14.5 624 Professor of lecture at university

5 Naohiro Matumura 13.5 82 My former colleague, co-author

6 Seiji Yamada 12.7 168 Acquaintance

7 Takafumi Takama 12.3 16 Former researcher of my former laboratory

8 Toru Ishida 12.1 574 A member of the advisory board of his research center

9 Takahira Yamaguchi 11.5 236 Acquaintance

10 Hidehiko Tanaka 11.3 842 University professor

Table 6. Result of authority propagation

Table 7. Result of authority propagation from Yutaka Matsuo
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for a peer-to-peer system. Richardson, Agrawal, 
and Domingos (2003) use social networks with 
trust to calculate the belief a user might have in a 
statement. Golbeck and Hendler (2005) proposed 
algorithms for inferring trust relationships among 
individuals that are not directly connected in the 
network. These approaches find paths from the 
source to any node, concatenating trust values 
along the paths to reveal, eventually, the recom-
mended belief or trust for the path.

Once algorithms for calculating trust have 
been designed properly, the next step is to use 
them for applications. With the current large 
amount of social network data available from the 
Web, several studies have addressed integrating 
network analysis and trust into applications. One 
promising application of trust is a recommendation 
system. Golbeck and Hendler (2004) developed 
TrustMail, an e-mail client that uses variations 
on these algorithms to score email messages in 
the user’s inbox based on the user’s participation 
and ratings in a FOAF network. They developed 
the Trust Module for FOAF, which extends the 
FOAF vocabulary by adding a property by which 
users state how much they trust one another. 
FilmTrust, which integrates social network and 
movie reviews, is another trust-based system 
(Golbeck & Parsia, 2006). System users can rate 
films and write reviews. In addition, they maintain 
a set of friends who are rated according to how 
much the user trusts their opinion of movies. In 
both systems, trust took on the role of a recom-
mendation system forming the core of algorithms 
to create predictive rating recommendations for 
emails and movies.

In addition to recommendation systems, an-
other application in which trust takes on an impor-
tant role is information sharing. With the current 
development of tools and sites that enable users to 
create Web contents, users can easily disseminate 
various kinds of information. In social network-
ing services (SNSs), a user creates a variety of 
contents including public and private information. 
Although these tools and sites enable users to 

easily disseminate information on the Web, users 
sometimes have difficulty sharing information 
with the right people and frequently have privacy 
concerns because large amounts of information 
including private photos, diaries, and research 
notes in the SNSs are neither completely open nor 
closed. One approach to tackle the information 
sharing issue on SNSs is to use a trust network. 
Availability information in the real world is often 
closely guarded and shared only with the people 
in one’s trust relationships: Confidential project 
documents which are limited to share within a 
division of company might be granted access to 
data of another colleague who is concerned with 
the project. By analogy with the examples in the 
real world, we find that social trust relationships 
are applicable to the process of disseminating and 
receiving information on SNSs.

Several studies have addressed integration of 
social networks and trust into information shar-
ing. Goecks and Mynatt (2004) propose a Saori 
infrastructure, which uses social networks for 
information sharing. In their system, access to 
post and edit Website information is controlled 
by relationships among users. Mori et al. (2005) 
propose a real-world oriented information shar-
ing system using social networks, which enables 
users to control the information dissemination 
process within social networks. The system 
enables users to analyze their social networks 
so that they can decide who will have rights to 
access their information. For example, if a user 
wants to diffuse information, he might consider 
granting access to a person who has both high 
degree and betweenness on his network. On the 
other hand, he must be aware of betweenness when 
the information is private or confidential. The 
users can also control information access using 
trust. For example, a user can give information 
access rights to other users who have certain trust 
relationships. The user can directly assign trust 
in a numerical value to a person in his relation. 
Then, trust can automatically be inferred using 
several algorithms, as mentioned earlier.
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Other applications include navigation using a 
social network. Polyphonet is used for academic 
conferences to navigate researchers: If one would 
like to know someone, that person can see the 
information of the other person, even the loca-
tion information at the conference site is avail-
able. Flink, developed by Mika, also navigates 
researchers of semantic Web. It is a very useful 
site if we wish to know a researcher, and associ-
ated collaborators.

Jin et al. (2006) uses the social network of 
contemporary arts as a navigation site for the 
International Triennale of Contemporary Art 

(Yokohama Triennale 2005). At exhibitions, it is 
usual that participants enjoy and evaluate each 
work separately. However, our presupposition 
was that if participants knew the background and 
relations of the artists, they might enjoy the event 
more. For that purpose, the system provided rela-
tions of artists and the evidential web pages for 
users. The system interface is shown in Figure 16. 
It was implemented using Flash display software 
to realize interactive navigation. The system pro-
vides a retrieval function. The information about 
the artist is shown on the left side if a user clicks 
a node. In addition, the edges from the nodes are 

Figure 16. Screenshot of navigation for Yokohama Triennale 2005



��0  

Social Network Mining from the Web

highlighted in the right-side network. The user can 
proceed to view the neighboring artists’ informa-
tion sequentially, and can also jump to the web 
pages that show evidence of the relation.

The recent interesting application of extracted 
social network online is detecting conflict of in-
terests (COI) of researchers (Aleman-Meza et al., 
2006). Using the network extracted from FOAF 
data and DBLP (Computer Science Bibliography), 
potential COI are suggested. Although the rules 
are constructed heuristically, the results show the 
usefulness of the social networks in actual use for 
assigning reviewers of papers and proposals.

future trends

social network extraction for 
General Purpose

Social network mining presents some concrete 
applications for semantic Web and information 
retrieval. It can also contribute as a more general 
data-mining tool.

A possible direction is expansion of the ap-
plicability to other named entities such as firms, 
organizations, books, and so on. Actually, some 
studies have undertaken such expansion on firms 
and artists (of contemporary art) (Jin et al., 2006). 
Because numerous entities are interests of Web 
users, mining the structure and showing an 
overview of it is a promising application: It aids 
users’ decision-making and information gather-
ing. Depending on the target entities, appropriate 
methods will vary: for researchers, the Web count 
is useful to detect the strength of ties among 
them, but for corporate purposes, the Web count 
does not produce a good index. Some corporate 
relationships receive much more attention than 
others thereby returning huge hit counts. Therefore 
more advanced language processing is necessary 
to identify the individual different relations.

Toward general-purpose social network 
mining, we must consider what a “good” social 

network is for a given purpose. A “good” social 
network depends on its purpose. It should represent 
a target domain most appropriately. We can first 
generalize social network extraction as:

f (Sr(X, Y),Θ) → {0, 1},

where Sr(X, Y) is an m-dimensional vector space 
(S (1)

r (X, Y), S (2)
r (X, Y), . . . , S (m)

r (X, Y)) to rep-
resent various measures for X and Y in relation r. 
For example, S (i)

r (X, Y) can be either a matching 
coefficient, a Jaccard coefficient, or an overlap 
coefficient. It can be a score function based on 
sentences including mentions of both X and Y. The 
parameter Θ is an n-dimensional vector space 
(θ(1), θ(2), . . . , θ(n)). For example, Θ	can be as a 
combination of thresholds for each co-occurrence 
measure. The function f determines whether an 
edge should be invented or not based on multiple 
measures and parameters.

A social network should represent particular 
relations of entities depending on purposes. 
Therefore, function f should not always be the 
same. We must have a method to infer an appro-
priate function f. For that reason, the algorithm 
inevitably consists of an off-line module and an 
online module: Function f is learned from the 
training examples and provides good classifica-
tion to other examples. This view, that is, learning 
extraction of social network from examples, is a 
currently neglected research topic. It would be a 
very important issue to integrate relational learn-
ing approach, (e.g., Getoor, Friedman, Koller, & 
Taskar, 2002).

The resultant network is useful for semantic 
Web studies in several ways. For example (inspired 
by (Aleman-Meza et al., 2006)), we can use a social 
network of artists for detecting COI among artists 
when they make evaluations and comments on 
others’ work. We might find a cluster of firms and 
characterize a firm by its cluster. Business experts 
often make such inferences based on firm relations 
and firm groups. Consequently, the firm network 
might enhance inferential abilities on the busi-
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ness domain. As a related work, Gandon, Corby, 
Giboin, Gronnier, and Guigard (2005) present a 
Semantic Web server that maintains annotations 
about the industrial organization of Telecom Val-
ley to partnerships and collaboration.

Mining ontology and structural 
knowledge

An increasing number of studies are done that 
use search engines. In natural language process-
ing research, many systems have begun using 
search engines. For example, Keller, Lapata, and 
Ourioupina (2002) use the Web to obtain frequen-
cies for unseen bigrams in a given corpus. They 
count for adjective-noun, noun-noun, and verb-
object bigrams by querying a search engine, and 
demonstrate that Web frequencies (Web counts) 
correlate with frequencies from a carefully edited 
corpus such as the British National Corpus (BNC). 
Aside from counting bigrams, various tasks are 
attainable using Web-based models: spelling 
correction, adjective ordering, compound noun 
bracketing, countability detection, and so on 
(Lapata & Keller, 2004). For some tasks, simple 
unsupervised models perform better when n-gram 
frequencies are obtained from the Web rather than 
a standard large corpus: the web yields better 
counts than BNC.

Some studies have used a search engine to 
extract relational knowledge from among enti-
ties, thereby harnessing the ontology of a target 
domain. For example, the relation between a book 
and an author can be extracted through putting a 
query to a search engine using the names of the 
book and the (possible) author, analyzing the text, 
and determining whether the relation is recogniz-
able. In addition, the pattern which describes an 
entity and its class is identifiable through a search 
engine. The popularly known pattern is called 
Hearst pattern, which include “A such as B” and 
“B is a (kind of) A”: We can infer that A is a class 
of B if many mentions exist in these patterns. 
Although this approach is heuristic-based, an 

important study could be made toward obtaining 
patterns using supervised / unsupervised learn-
ing. Various patterns that describe a specific kind 
of relation and how to obtain such patterns are 
important issues.

Recognizing relations among entities is a 
necessary ingredient for advanced Web systems, 
including question answering, trend detection, and 
Web search. In the future, there will increasingly 
be studies that use search engines to obtain struc-
tural knowledge from the web. A search engine 
can be considered as a database interface for a 
machine with the huge amount of global informa-
tion on social and linguistic activities.

conclusIon

This chapter describes a social network mining 
approach using the Web. Several studies have 
addressed similar approaches. We organize those 
methods into small pseudocodes. POLYPHONET, 
which was implemented using several algorithms 
described in this chapter, was put into service 
at JSAI conferences over three years and at the 
UbiComp conference. We also discuss important 
issues including entity recognition, social net-
work analysis, and applications. Lastly, future 
trends toward general-purpose social network 
extraction and structural knowledge extraction 
are described.

Merging the vast amount of information on 
the Web and producing higher-level information 
might foster many knowledge-based systems 
of the future. Acquiring knowledge through 
Googling (Cimiano, 2004) is an early work for 
this concept. Increasing numerous studies of the 
last few years have been conducted using search 
engines for these. More studies in the future will 
use search engines as database interfaces for ma-
chines and humans to the world’s information.
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endnotes

1 http://www.friendster.com/
2 http://www.orkut.com/
3 http://www.imeem.com/
4 http://360.yahoo.com/

5 http://flink.Semanticweb.org/. The system 
won the first prize at the Semantic Web 
Challenge in ISWC2004.

6 As of October, 2005 by Google search 
engine. The hit count is that obtained after 
omission of similar pages by Google.

7 Using the disaster mitigation research com-
munity in Japan.

8 We use an entity as a broader term of a 
person.

9 http://www.google.com/
10 As of 2004.
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AbstrAct

This chapter introduces a data mining method for the discovery of association rules from images of 
scanned paper documents. It argues that a document image is a multi-modal unit of analysis whose 
semantics is deduced from a combination of both the textual content and the layout structure and the 
logical structure. Therefore, it proposes a method where both the spatial information derived from a 
complex document image analysis process (layout analysis), and the information extracted from the 
logical structure of the document (document image classification and understanding) and the textual 
information extracted by means of an OCR, are simultaneously considered to generate interesting pat-
terns. The proposed method is based on an inductive logic programming approach, which is argued 
to be the most appropriate to analyze data available in more than one modality. It contributes to show 
a possible evolution of the unimodal knowledge discovery scheme, according to which different types 
of data describing the units of analysis are dealt with through the application of some preprocessing 
technique that transform them into a single double entry tabular data. 
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IntroductIon

Business processes have always been based on the 
flow of documents around an organization. The 
concept of flow is almost synonymous with the 
concept of paper flow in typical office environ-
ments, where the main problem is the amazing 
number of printed documents that are generated 
and filed. In fact, much time and effort is wasted in 
ineffective searches through multiple information 
sources. Organizations need to extend the scope of 
Business Intelligence especially to their internal 
collections of textual data in order to make deci-
sions on the basis of knowledge captured by these 
collections. Therefore new document management 
systems with abilities to catalog and automatically 
organize these documents are necessary. Personal 
document processing systems that can provide 
functional capabilities like classifying, storing, 
retrieving, and reproducing documents, as well 
as extracting, browsing, retrieving and synthesiz-
ing information from a variety of documents are 
in continual demand (Fan, Sheng, & Ng, 1999). 
However, they generally operate on electronic 
documents (e.g., text, word, rtf, pdf, html, and xml 
files) and not on the more common paper docu-
ments, which are made anyway computationally 
processable through digital scanning.

The pressing need for systems to be used as 
intelligent interfaces between paper and electronic 
media has led to the development of a large number 
of techniques for document image analysis and 
recognition. The conversion of document images 
into a symbolic form appropriate for subsequent 
modification, storage, retrieval, reuse, and trans-
mission is a complex process articulated into 
several stages. Initially, the document image is 
preprocessed, for instance, to remove noise. Then 
it is decomposed into several constituent items, 
which represent coherent components of the docu-
ment layout (e.g., text lines or half-tone images). 
Finally, logically relevant layout components (e.g., 
title and abstract) are recognized. 

Domain-specific knowledge appears essential 
for document image analysis and understanding: 
in the literature, there are no examples of attempts 
to develop document analysis systems that can 
interpret arbitrary documents (Nagy, 2000). In 
many applications presented in the literature, a 
great effort is made to hand-code the necessary 
knowledge according to some formalism, such as 
block grammars (Nagy, Seth. & Stoddard, 1992), 
geometric trees (Dengel, Bleisinger, Hoch, Fein, 
& Hönes, 1992), and frames (Wenzel & Maus, 
2001). However, hand-coding domain knowledge 
is time-consuming and limits the application of 
document analysis systems to predefined classes 
of documents.

To alleviate the burden in developing and cus-
tomizing document analysis systems, data mining 
methods can be profitably applied to extract the 
required domain-specific knowledge. Document 
image mining denotes the synergy of data mining 
and document analysis system technology to aid 
in the analysis and understanding of large collec-
tions of document images. It is an interdisciplin-
ary endeavor that draws upon expertise in image 
processing, data mining, machine learning, and 
artificial intelligence. The fundamental challenge 
in document image mining is to determine how 
low-level, pixel representation contained in a raw 
image of a scanned document can be efficiently 
and effectively processed to identify high-level 
spatial objects and relationships. Since the be-
ginning of the 1990’s, when the first attempts 
in applying machine learning techniques to 
document images were reported in the literature 
(Esposito, Malerba, & Semeraro, 1990), there has 
been a growing research focus on document im-
age mining (Aiello, Monz, Todoran, & Worring, 
2002; Akindele & Belaïd, 1995; Berardi, Ceci, & 
Malerba, 2003; Cesarini, Francescani, Gori, Mari-
nai, Sheng, & Soda, 1997; Dengel, 1993; Dengel 
& Dubiel, 1995; Esposito, Malerba & Semeraro, 
1994; Kise, Yajima, Babaguchi, Fukunaga, 1993; 
Walischewski, 1997) . 
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More recently, we have also assisted to a 
growing interest in text mining, a technology 
for analyzing large collections of unstructured 
documents for the purposes of extracting in-
teresting and nontrivial patterns or knowledge. 
Knowledge discovered from textual documents 
can be in various forms including classification 
rules, which partition document collections into 
a given set of classes (Sebastiani, 2002), clus-
ters of similar documents or objects composing 
documents (Steinbach, Karypis, & Kumar, 2000), 
patterns describing trends, such as emerging 
topics in a corpus of time-stamped documents 
(Lent, Agrawal & Srikant, 1997; Mei & Zhai, 
2005; Morinaga & Yamanishi, 2004;), concept 
links, that connect related documents by identify-
ing their commonly shared concepts and allow 
browsing a documents collection (Ben-Dov, Wu, 
Cairns, & Feldman, 2004; Sheth, Aleman-Meza, 
Arpinar, Halaschek, Ramakrishnan, & Bertram, 
2004), and semantic graphs that can be used as 
document summaries (Leskovec, Grobelnik, & 
Millic-Frayling, 2004).

Document image mining and text mining 
have always been considered two complementary 
technologies: the former is applicable to docu-
ments available on paper media, while the second 
is appropriate for documents that are generated 
according to some textual format. Document 
image mining aims to identify high-level spatial 
objects and relationships, while text mining is 
more concerned with patterns involving words, 
sentences, and concepts. The possible interactions 
between spatial information extracted from docu-
ment images and textual information related to the 
content of some layout components, have never 
been considered in the data mining literature. 

This chapter introduces a new, integrated ap-
proach to mining patterns from document images 
acquired by scanning the original paper docu-
ments. In this approach, both the layout and the 
textual information available in a document are 
taken into account. They are extracted by means 
of a complex process that aims at converting 

unstructured document images into semi-struc-
tured XML documents where textual, graphical, 
layout and semantic pieces of information coexist. 
The particular type of patterns extracted in the 
proposed approach is spatio-textual association 
rules that express regularities among content-
enriched logical structures of a set of document 
images belonging to the same class. 

In document image processing, this kind of 
patterns can be used in a number of ways. First, 
discovered association rules can be used as con-
straints defining domain templates of documents 
both for classification tasks, such as in associative 
classification approaches (Liu, Hsu & Ma, 1998), 
and to support layout correction tasks. Second, 
the rules could be also used in a generative way. 
For instance, if a part of the document is hidden 
or missing, strong association rules can be used to 
predict the location of missing layout/logical com-
ponents (Hiraki, Gennari, Yamamoto, & Anzai, 
1991). Moreover, a desirable property of a system 
that automatically generates textual documents is 
to take into account the layout specification during 
the generation process, since layout and wording 
generally interact (Reichenberger, Rondhuis, 
Kleinz, & Bateman, 1995). Association rules can 
be useful to define the layout specifications of such 
a system. Finally, this problem is also related to 
document reformatting (Hardman, Rutledge, & 
Bulterman, 1998). 

The goal of the chapter is also to present a multi-
step knowledge-intensive process that transforms 
document images into structured representations 
allowing images to be mined. 

bAckGround

In tasks where the goal is to uncover structure 
in the data and where there is no target concept, 
the discovery of relatively simple but frequently 
occurring patterns has shown good promise. As-
sociation rules are a basic example of this kind of 
setting. The problem of mining association rules 
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was originally introduced in the work by Agrawal, 
Imieliński, and Swami (1993). Association rules 
can be expressed by an implication:  

X → Y

where X and Y are sets of items, such that X ∩ 
Y = ∅. The meaning of such rules is quite intui-
tive: Given a database D of transactions, where 
each transaction T ∈ D is a set of items, X → Y  
expresses that whenever a transaction T contains 
X  than T probably contains Y also. The conjunc-
tion X ∧ Y is called pattern. Two parameters are 
usually reported for association rules, namely the 
support, which estimates the probability p(X ⊆ 
T ∧ Y ⊆ T), and the confidence, which estimates 
the probability p(Y ⊆ T | X ⊆ T). The goal of as-
sociation rule mining is to find all the rules with 
support and confidence, exceeding user specified 
thresholds, henceforth called minsup and min-
conf respectively. A pattern X ∧ Y is large (or 
frequent) if its support is greater than or equal 
to minsup. An association rule X → Y is strong 
if it has a large support (i.e., X ∧ Y is large) and 
high confidence. 

Traditionally, association rules are discovered 
for market basket analysis. However, it is becom-
ing clear that they can be successfully applied 
to a wide range of domains, such as Web access 
patterns discovery (Chen, Park, & Yu, 1996), 
building intrusion detection models (Lee, Stolfo, 
& Mok, 1998) and mining data streams (Jiang & 
Gruenwald, 2006). An interesting application is 
faced in the work by Ordonez and Omiecinski 
(1999) where a method for mining knowledge from 
images is proposed. The method is an association 
rule miner that automatically identifies similari-
ties in images on the basis of their content. The 
content is expressed in terms of objects automati-
cally recognized in a segmented image. The work 
shows that even without domain knowledge it is 
possible to automatically extract some reliable 
knowledge. Mined association rules refer to the 
presence/absence of an object in an image, since 

images are viewed as transactions while objects 
as items. No spatial relationship between objects 
in the same image is considered. 

Nevertheless, mining patterns from document 
images raises a lot of different issues regarding 
document structure, storage, access, and pro-
cessing. 

Firstly, documents are typically unstructured 
or, at most, semistructured data. In the case of 
structured data, the associated semantics or mean-
ing is unambiguously and implicitly defined and 
encapsulated in the structure of data (i.e., relational 
databases), whereas unstructured information 
meaning is only loosely implied by its form and 
requires several interpretation steps in order to 
extract the intended meaning. Endowing docu-
ments with a structure that properly encode their 
semantics adds a degree of complexity in the ap-
plication of the mining process. This makes the 
data preprocessing step really crucial.

Secondly, documents are message conveyers 
whose meaning is deduced from the combina-
tion of the written text, the presentation style, 
the context, the reported pictures, and the logical 
structure, at least. For instance, when the logical 
structure and the presentation style are quite 
well-defined (typically when some parts are 
pre-printed or documents are generated by fol-
lowing a predefined formatting style), the reader 
may easily identify the document type and locate 
information of interest even before reading the 
descriptive text (e.g., the title of a paper in the 
case of scientific papers or newspapers, the sender 
in the case of faxes, the supplier or the amount 
in the case of invoices, etc.). Moreover, in many 
contexts, illustrative images fully complement the 
textual information, such as diagrams in socio-
economic or marketing reports. By considering 
typeface information, it is also possible to im-
mediately and clearly capture the notion about 
the historical origin of documents (e.g., medieval, 
renaissance, baroque, etc.) as well as the cultural 
origin (e.g., Indic, Kangi, Hangul, or Arabic rather 
than European scripts). The presence of spurious 
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objects may inherently define classes of docu-
ments, such as revenue stamps in the case of legal 
documents. The idea to consider the multimodal 
nature of documents falls in the novel research 
trend of the document understanding field, that 
encourages the development of hybrid strategies 
for knowledge capture in order to exploit the dif-
ferent sources of knowledge (e.g., text, images, 
layout, type style, tabular, and format informa-
tion) that simultaneously define the semantics of 
a document (Dengel, 2003). 

However, data mining has evolved following 
a unimodal scheme instantiated according to the 
type of the underlying data (text, images, etc). 
Applications of data mining involving hybrid 
knowledge representation models are still to be 
explored. Indeed, several works have been pro-
posed to mine association rules from the textual 
dimension (Ahonen-Myka, 2005; Amir, Aumann, 
Feldman, & Fresko, 2005; Cherfi, Napoli, & 
Toussaint, 2005; Raghavan & Tsaparas, 2002; 
Srinivasan, 2004) with the goal to find rules that 
express regularities concerning the presence of 
particular words or particular sentences in text 
corpora. Conversely, mining the combination of 
structure and content dimensions of documents 
has not been investigated yet in the literature, 
even though some emerging real-world applica-
tions are demanding for mining processes able 
to exploit several forms of information, such as 
images and captions in addition to full text (Yeh, 
Hirschman, & Morgan, 2003). Some interesting 
examples of association rule mining applied to 
more complex cases of data are proposed in (Li, 
Wu & Pottenger, 2005), where textual documents 
come from different distributed sources, and in 
(Lee, Lin & Chen, 2001) which presents an ap-
plication on temporal document collections.

Thirdly, documents are a kind of data that do 
not match the classical attribute-value format. 
In the tabular model, data are represented as 
fixed-length vectors of variable values describing 
properties, where each variable can have only a 
single, primitive value. Conversely, the entities 

(e.g., the objects composing a document image) 
that are observed and about which information is 
collected may have different properties, which can 
be properly modeled by as many data tables (rela-
tional data model) as the number of object types 
(Knobbe, Blockeel, Siebes, & Van der Wallen, 
1999). Moreover, relationships (e.g., topological or 
distance relationships that are implicitly defined 
by the location of objects spatially distributed 
in a document image or words distributed in 
text) among observed objects forming the same 
semantic unit can be also explicitly modeled in a 
relational database by means of tables describing 
the relationship. Hence, the classical attribute-
value representation seems too restrictive and 
advanced approaches to both represent and reason 
in presence of multiple relations among data are 
necessary. 

Lastly, the data mining method should take into 
account external information, also called expert 
or domain knowledge, that can add semantics 
to the whole process and then obtain high-level 
decision support and user confidence. 

All these peculiarities make documents a 
kind of complex data that require methodological 
evolutions of data mining technologies as well as 
the involvement of several document processing 
techniques. In our context, the extraction of spatio-
textual association rules requires the consideration 
of all these sources of complexity coming from 
the inherent nature of processed documents. 

Since the early work by Agrawal, Imieliński, 
and Swami (1993), several efficient algorithms 
to mine association rules have been developed. 
Studies cover a broad spectrum of topics including: 
(1) fast algorithms based on the level-wise Apriori 
framework (Agrawal & Srikant, 1994; Park, Chen, 
& Yu, 1997); (2) FP-growth algorithms (Han, Pei, 
& Yin, 2000); (3) incremental updating (Lee et 
al., 2001); (4) mining of generalized and multi-
level rules (Han & Fu, 1995; Srikant & Agrawal, 
1995); (5) mining of quantitative rules (Srikant & 
Agrawal, 1996); (6) mining of multidimensional 
rules (Yang, Fayyad, & Bradley, 2001); (7) multiple 



  ���

Discovering Spatio-Textual Association Rules in Document Images

minimum supports issues (Liu, Hsu & Ma, 1999; 
Wang, He & Han, 2000). However, the blueprint 
for all the algorithms proposed in the literature is 
the levelwise method by Mannila and Toivonen 
(1997), which is based on a breadth-first search in 
the lattice spanned by a generality order between 
patterns. Despite all the interesting extensions 
proposed in the literature, most of these algorithms 
work on data represented as fixed-length vectors, 
that is, according to the single-table assumption. 
More specifically, it is assumed that the data to be 
mined are represented in a single table (or rela-
tion) of a relational database, such that each row 
(or tuple) represents an independent unit of the 
sample population and the columns correspond 
to properties of units. This means that all these 
methods of association rule discovery requires 
that the database has to be “flattened” somehow 
in a single table before applying the data mining 
method. Moreover, discovered patterns are not re-
lational. Relational frequent patters are conversely 
generated by WARMR (Dehaspe & Toivonen, 
1999) which adapts the levelwise method to a 
search space of conjunctive first-order formulas 
representing patterns. However, no example of 
relational association rule discovery that is able to 
include domain-specific knowledge in the reason-
ing step is reported in the literature. Indeed, the 
use of background knowledge generally affects the 
processing of data to be mined but not the form 
of patterns. Conversely, mining from documents 
is the kind of application that may benefit from 
mechanisms for reasoning in presence of knowl-
edge on the domain and discovery goal too. 

MAIn thrust of the chAPter: 
Issues

In this chapter we investigate the discovery of 
spatio-textual association rules that takes into 
account both the layout and the textual dimen-
sion of document images acquired by scanning 
paper documents. However, the extraction of both 

layout and textual information from document 
images is a complex process that is articulated 
into several stages. Initial processing steps include 
binarization, skew detection, noise filtering, and 
segmentation. Then, a document image is decom-
posed into several constituent items that represent 
coherent components of the documents (e.g., text 
lines, half-tone images, line drawings or graphics) 
without any knowledge of the specific format. This 
layout analysis step precedes the interpretation or 
understanding of document images whose aim is 
that of recognizing semantically relevant layout 
components (e.g., title, abstract of a scientific paper 
or leading article, picture of a newspaper) as well 
as extracting abstract relationships between layout 
components (e.g., reading order).

The domain-specific knowledge required to 
perform effective interpretation and understand-
ing of document images is typically restricted 
to relevant and invariant layout characteristics 
of the documents. The idea is that humans are 
generally able to classify documents (invoices, 
letters, order forms, papers, indexes, etc.) from 
a perceptive point of view, by recognizing the 
layout structure of the documents. However, this 
layout-based characterization of classes of docu-
ments is not applicable to all domains. Indeed in 
many cases it is necessary to use also information 
on the textual content of the document. These 
considerations motivate the importance of mining 
spatio-textual association rules as a means to cap-
ture domain-specific knowledge which provides 
us with both a layout-based and a content-based 
characterization of a class of documents. In the 
following, we present solutions implemented 
in a knowledge-intensive document processing 
system to extract these content-enriched logical 
structures from document images.

As to knowledge representation issues, rela-
tional formalisms allow us to represent a docu-
ment image as the composition of layout objects 
described on the basis of attributes about their 
geometry, textual content, color, as well as topo-
logical relations describing their spatial distribu-
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tion in a document page. To navigate the relational 
structure of document data and to express complex 
background knowledge, we resort to inductive 
logic programming (ILP) as learning framework 
to investigate association rule induction. ILP aims 
to induce general rules starting from specific 
observations and background knowledge. It is 
a research area at the intersection of inductive 
machine learning and logic programming. Logic 
programming uses as representation language a 
subset of first-order logic, also called relational 
logic, which is really appropriate to represent 
multirelational data. Indeed, the ILP paradigm is 
the natural candidate for data mining tasks with 
relational representations and abundant expert 
knowledge (Flach & Lavrac, 2003). 

In this data representation model of documents, 
their inherent spatial nature raises two further 
issues. First, the location and the extension of 
layout components implicitly define spatial rela-
tions, such as topological, distance and direction 
relations. Therefore, complex data transformation 
processes are required to make spatial relations 
explicit. Second, layout components can be de-
scribed at multiple levels of granularity in order 
to preserve spatial relations. 

Multi-level approaches to spatial association 
rule mining allow us to discover association rules 
involving spatial objects at different granularity 
levels. A peculiarity of spatial association rule 
mining is that associations are discovered between 
reference objects (ro) and some task-relevant ob-
jects (tro). The former are the main subject of the 
description, while the latter are spatial objects that 
are relevant for the task at hand and are spatially 
related to the former. Multi-level association rules 
can be discovered when taxonomic knowledge 
(i.e., is-a hierarchies) is expressed on task-relevant 
objects. Merely representing taxonomic relations 
is not sufficient since specific mechanisms for 
taxonomic reasoning are necessary in the mining 
step. For instance, although is-a hierarchies can 
be represented in WARMR, the system is not able 
to perform multi-level analysis. Conversely, we 

propose a relational algorithm for multi-level as-
sociation rule extraction that is explicitly designed 
for this task and that fully exploits hierarchical 
knowledge expressed on items of interest.

our APProAch

In our proposal, the system used for processing 
documents is WISDOM++  (Altamura, Esposito, 
& Malerba, 2001). WISDOM++ (www.di.uniba.
it/~malerba/wisdom++/) is a document analysis 
system that can transform textual paper documents 
into XML format. This is performed in several 
steps. First, the image is segmented into basic 
layout components (non-overlapping rectangular 
blocks enclosing content portions). These layout 
components are classified according to the type of 
their content (e.g., text, graphics, and horizontal/
vertical line). Second, a perceptual organization 
phase, called layout analysis, is performed to 
detect structures among blocks. The result is a 
tree-like structure, named layout structure, which 
represents the document layout at various levels of 
abstraction and associates the content of a docu-
ment with a hierarchy of layout components, such 
as blocks, lines, and paragraphs. Third, the docu-
ment image classification step aims at identifying 
the membership class (or type) of a document 
(e.g., censorship decision, newspaper article, etc.), 
and it is performed using some first-order rules 
which can be automatically learned from a set of 
training examples. Document image understand-
ing (or interpretation) creates a mapping of the 
layout structure into the logical structure, which 
associates the content with a hierarchy of logical 
components, such as title/authors of a scientific 
article, or the name of the censorer in a censorship 
document, and so on. As previously pointed out, 
the logical and the layout structures are strongly 
related. For instance, the title of an article is usually 
located at the top of the first page of a document 
and it is written with the largest character set used 
in the document. Document image understanding 
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also uses first-order rules (Malerba, Esposito, 
Lisi, & Altamura, 2001). Once the logical and 
layout structures have been mapped, OCR can 
be applied only to those textual components of 
interest for the application domain, and its content 
can be stored for future retrieval purposes. This 
way, the system can automatically determine 
not only the type of document, but is also able to 
identify interesting parts of a document and to 
extract the information given in this part plus its 
meaning. The result of the document analysis is 
an XML document which makes the document 
image easily retrievable. 

Once the layout/logical structure as well as the 
textual content of a document have been extracted, 
association rules are mined by taking into account 
all sources of complexity described in previous 
sections and, in particular, by taking into account 
the inherent spatial nature of the layout structure. 
For this reason, association rule mining methods 
developed in the context of spatial data mining 
are considered and, in particular, we resort to the 
Spatial Association Rules mining system SPADA 
(Spatial Pattern Discovery Algorithm) (Appice, 
Ceci, Lanza, Lisi, & Malerba, 2003) that discovers 
spatial association rules, that is, association rules 
involving spatial objects and relations. It is based 
on an ILP approach which permits the extraction 
of multi-level spatial association rules, that is, as-
sociation rules involving spatial objects at different 
granularity levels. It also exploits the expressive 
power of first order logic that permits to represent 
background knowledge on the application domain 
and to define some form of search bias. 

In SPADA, training examples are represented 
in first order logic representation formalism. Next 
Section introduces the first-order logic descrip-
tions of documents processed by SPADA.

docuMent descrIPtIons

WISDOM++ has been extended in order to support 
the generation of document descriptions for SPA-

DA. In a document description, ground facts are 
used to describe the logical structure of a document 
image in terms of relational features, attributes 
and textual features. In particular, we mention 
locational features such as the coordinates of the 
centroid of a logical component (x_pos_center, 
y_pos_center), geometrical features such as 
the dimensions of a logical component (width, 
height), and topological features such as relations 
between two components (on_top, to_right, align-
ment). We use the aspatial feature type_of  which 
specifies the content type of a logical component 
(e.g., image, text, horizontal line). Other aspatial 
features, called logical features, are used to define 
the label associated to the logical components. 
For example, in the case of scientific papers they 
are: affiliation, page_number, figure, caption, 
index_term, running_head, author, title, abstract, 
formulae, subsection_title, section_title, biogra-
phy, references, paragraph, table, undefined. In 
order to represent the textual dimension, we also 
introduce textual features (e.g. text_in_affiliation, 
text_in_index_term) describing the presence or 
the absence of a term in a logical component. In 
WISDOM++, the use of these features is limited 
to describe only logical components of interest 
that are opportunely specified by the user.

In Box 1, we report an example of the docu-
ment description extracted by WISDOM++ for 
the document page shown in Figure 1, where 
tpami1 _ 1 _ 14 represents the page and tpa-
mi1 _ 1 _ 14 _ 2,…,tpami1 _ 1 _ 14 _ 15 
represent logical components of the page. It is 
noteworthy that the relation part_of is used to 
express the membership of a component to a page. 
Numerical features are automatically discretized 
before mining association rules by means of the 
RUDE algorithm (Ludl & Widmer, 2000).

Concerning textual predicates, they express 
the presence of a term in a logical component. 
Terms have been automatically extracted by 
means of a text-processing module implemented 
in WISDOM++. It aims to describe each single 
textual layout component of interest by means 
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class(h,tpami),
running_head(tpami�_�_��,tpami�_�_��_�).
title(tpami�_�_��,tpami�_�_��_�). 
author(tpami�_�_��,tpami�_�_��_�). 
abstract(tpami�_�_��,tpami�_�_��_�).
 ...
page_first(tpami1_1_14).
part_of(tpami�_�_��,tpami�_�_��_�). 
part_of(tpami�_�_��,tpami�_�_��_�).
part_of(tpami�_�_��,tpami�_�_��_�).
 ...
width(tpami�_�_��_�,[���..��0]).
width(tpami�_�_��_�,[���..��0]).
width(tpami�_�_��_�,[���..���]).
 ...
height(tpami�_�_��_�,[�..�]).
height(tpami�_�_��_�,[��..��]).
height(tpami�_�_��_�,[��..��]).
 ...
type_of(tpami�_�_��_�, text).
type_of(tpami�_�_��_�, text).
type_of(tpami�_�_��_�, text).
 ...
type_of(tpami�_�_��_�, hor_line).
 ...
x_pos_centre(tpami�_�_��_�,[�0�..���]).
x_pos_centre(tpami�_�_��_�,[���..���]).
x_pos_centre(tpami�_�_��_�,[���..���]).
 ...
y_pos_centre(tpami�_�_��_�,[��..��]).
y_pos_centre(tpami�_�_��_�,[��..��]).
y_pos_centre(tpami�_�_��_�,[���..���]).
 ...
on_top(tpami�_�_��_�,tpami�_�_��_�).
on_top(tpami�_�_��_�,tpami�_�_��_�).
on_top(tpami�_�_��_�,tpami�_�_��_�).
 ...

Box 1.

continued on next page
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to_right(tpami�_�_��_��,tpami�_�_��_��).
to_right(tpami�_�_��_��,tpami�_�_��_��).
to_right(tpami�_�_��_��,tpami�_�_��_��).
 ...
only_left_col(tpami�_�_��_�,tpami�_�_��_�0).
 ...
text_in_index_term(tpami�_�_��_�,model).
text_in_index_term(tpami�_�_��_�,track).
text_in_abstract(tpami�_�_��_�,base).
text_in_abstract(tpami�_�_��_�,model).
text_in_title(tpami�_�_��_�,algorithm).
 ... 

Box 1. continued

Figure 1. An example of document image processed by WISDOM++ (layout and logical structure)
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of the classical bag-of-words representation. 
All textual components are initially tokenized 
and the set of obtained tokens (words) is filtered 
in order to remove punctuation marks, numbers 
and tokens of less than three characters. Only 
relevant tokens are used in textual predicates. 
Before selecting relevant features, standard text 
preprocessing methods are used to: 

1. Remove stop words, such as articles, adverbs, 
prepositions and other frequent words. 

2. Determine equivalent stems (stemming), 
such as “topology” in the words “topology” 
and “topological,” by means of Porter’s 
algorithm for English texts (Porter, 1980).

  
Feature selection is based on the maximization 
of the product maxTF•DF2•ICF (Ceci & Malerba, 
2007) which scores high terms appearing (possibly 
frequently) in a logical component c and penalizes 
terms common to other logical components. 

More formally: Let c be the logical label as-
sociated to a logical component. Let d be a bag 
of word representation of a logical component 
labeled with c (after the tokenizing, filtering and 
stemming steps), w a term extracted from d and 
TFd(w) the relative frequency of w in d. Then, the 
following statistics can be computed:

• The maximum value of TFd(w) on all logical 
components d labeled with c

• The document frequency, that is, the percent-
age of logical components labeled with c in 
which the term w occurs 

• The category frequency CFc(w), that is, the 
number of labels c’ ≠ c, such that w occurs 
in logical components labeled with c’.

According to such statistics, the score vi associated 
to the i-th term wi belonging to at least one of the 
logical components labeled with c is:    
                  

2 1( ) ( )
( )i c i c i

c i

v TF w DF w
CF w

= × ×

According to this function, it is possible to identify 
a ranked list of “discriminative” terms for each 
of the possible labels. From this list, we select 
the best ndict terms in Dictc, where ndict is a user-
defined parameter.

The textual dimension of each logical compo-
nent d labeled as c is represented in the document 
description as a set of ground facts that express 
the presence of a term w ∈ Dictc  in the specified 
logical component. 

MInInG sPAtIo-textuAl 
AssocIAtIon rules WIth sPAdA

Once the document descriptions are generated, 
SPADA can be used to extract association rules. 
The problem of mining spatial association rules 
can be formalized as follows:

• Given a set S of reference objects, some 
sets Rk, 1 ≤ k ≤ m, of task-relevant objects, 
a background knowledge BK including some 
spatial hierarchies Hk on objects in Rk, M 
granularity levels in the descriptions (1 is 
the highest while M is the lowest), a set of 
granularity assignments Ψk which associ-
ate each object in Hk with a granularity 
level, a couple of thresholds minsup[l] and 
minconf[l] for each granularity level, a 
language bias LB that constrains the search 
space

• Find strong multi-level spatial association 
rules, that is, association rules involving 
spatial objects at different granularity lev-
els.

The reference objects are the main subject of the 
description, that is, the observation units, while 
the task relevant objects are spatial objects that 
are relevant for the task at hand and are spatially 
related to the former. Hierarchies Hk define is-
a (i.e., taxonomical) relations on task relevant 
objects. Both frequency of spatial patterns and 
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strength of rules depend on the granularity level 
l at which patterns/rules describe data. There-
fore, a pattern P (s%) at level l is frequent if s ≥ 
minsup[l] and all ancestors of P with respect to 
Hk are frequent at their corresponding levels. A 
spatial association rule Q → R (s%, c%) at level 
l is strong if the pattern Q ∪ R (s%) is frequent 
and c ≥ minconf[l].

SPADA operates in three steps for each 
granularity level: (1) pattern generation; (2) pat-
tern evaluation; (3) rule generation and evaluation. 
SPADA takes advantage of statistics computed at 
granularity level l when computing the supports 
of patterns at granularity level l+1.

The expressive power of first-order logic is 
exploited to specify both the background knowl-
edge BK, such as spatial hierarchies and domain 
specific knowledge, and the language bias LB. 
Spatial hierarchies allow us to face with one of 
the main issues of spatial data mining, that is, 
the representation and management of spatial 
objects at different levels of granularity, while 
the domain specific knowledge, encoded in a set 
of rules, supports qualitative spatial reasoning. 
On the other hand, the LB is relevant to allow 

the user to specify the user’s bias for interesting 
solutions, and then to exploit this bias to improve 
both the efficiency of the mining process and the 
quality of the discovered rules. In SPADA, the 
language bias is expressed as a set of constraint 
specifications for either patterns or association 
rules. Pattern constrains allow the user to specify 
a literal or a set of literals that should occur one 
or more times in discovered patterns. During the 
rule generation phase, patterns that do not satisfy 
a pattern constraint are filtered out. Similarly, rule 
constraints are used to specify literals that should 
occur in the head or body of discovered rules. In 
addition, a rule constraint permits to specify the 
maximum number of literals that should occur 
in the head of a rule. 

In our application domain, reference objects 
are all the logical components for which a logi-
cal label is specified. Task relevant objects are 
all the logical components (including undefined 
components).

The BK is used to specify the hierarchy of 
logical components (Figure 2) that allows the 
system to extract spatial association rules at dif-
ferent granularity levels.

article 

page component 

heading 

content 

identification 

synopsis 

body 

final components 

page number 

running head 

author 
title 

affiliation 

index term 

abstract 

references 

paragraph 

biography 

figure 

subsection title 
section title 

caption 

formulae 
table 

undefined 
 

Figure 2. Hierarchy of logical components
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The BK also permits to automatically associate 
information on page order to layout components, 
since the presence of some logical components 
may depend on the order page (e.g., author is in 
the first page). This concept is expressed by means 
of the following Prolog rules seen in Box 2.

Moreover, in the BK we can also define the 
general textual predicate text _ in _ com-
ponent, as seen in Box 3.

It is noteworthy that hierarchies are defined on 
task relevant objects. This means that, in theory, it 
is not possible to consider the same reference ob-
ject at different levels of granularity. To overcome 
this limitation, we introduced in the BK the fact 
specialize(X,X) which allows us to consider a 
ro as a tro. By means of LB constraints we forced 
the presence of the predicate specialize in the 
head of an extracted association rule. 

Concerning the textual dimension, the lan-
guage bias of SPADA has been extended in order 
to properly deal with atoms representing tokens. 
Indeed, SPADA language bias requires that the 
user specify predicates that can be involved in 
a pattern. For instance, if we are interested in 
patterns that contain the predicate text _

in _ abstract(A, paper) where A is a 
variable representing a tro already introduced 
in the pattern and “paper” is a constant value 
representing the presence of the term “paper” 
in A, we have to specify the following bias rule 
lb _ atom(text _ in _ component(old 
tro, paper)). This means that it is necessary 
to specifies a rule for each constant value that 
could be involved in the predicate. 

Although this approach can be profitably 
used to keep under control the dimension of the 
search space avoiding the exploration of candidate 
patterns containing non interesting constants, it 
turns out to be a severe limitation in our context 
where there are hundreds of constants represent-
ing selected terms (the number depends on the 
ndict constant and on the number of user-selected 
logical labels for which the textual dimension is 
considered). To avoid the manual or semiautomatic 
specification of different lb _ atom biases, we 
extended the SPADA LB in order to support 
anonymous variables:

lb _ atom(text _ in _ component(old 
tro, _ )).

at_page_first(X)   :- part_of(Y,X), page_first(Y).
at_page_intermediate(X) :- part_of(Y,X),page_intermediate(Y).
at_page_last_but_one(X) :- part_of(Y,X),page_last_but_one(Y).
at_page_last(X)           :- part_of(Y,X), page_last(Y).

Box 2. 

text_in_component(X,Y) :- text_in_index_term(X,Y).
text_in_component(X,Y) :- text_in_references(X,Y).
text_in_component(X,Y) :- text_in_abstract(X,Y).
text_in_component(X,Y) :- text_in_title(X,Y).
text_in_component(X,Y) :- text_in_running_head(X,Y).

Box 3. 
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This means that we intend to consider in the 
search phase those patterns involving the predi-
cate text _ in _ component whose second 
argument is an arbitrary term. The SPADA search 
strategy has been consequently modified in order 
to support this additional feature.

APPlIcAtIon to the tPAMI 
corPorA

We investigate the applicability of the proposed 
solution to real-world document images. In par-
ticular, we have considered 24 multipage docu-
ments, which are scientific papers published as 
either regular or short in the IEEE Transactions on 
Pattern Analysis and Machine Intelligence in the 
January and February 1996 issues. Each paper is 
a multi-page document and has a variable number 
of pages and layout components for page. A user 
of WISDOM++ labels some layout components 

of this set of documents according to their logi-
cal meaning. Those layout components with no 
clear logical meaning are labelled as undefined. 
All logical labels belong to the lowest level of the 
hierarchy reported in the previous section. We 
processed 217 document images in all. 

In Table 1, the number of logical components 
for the whole data set is shown. The number of 
features to describe the 24 documents presented to 
SPADA is 38,948, about 179 features for each page 
document. The total number of logical components 
is 3,603 (1,014 of which are undefined) about 150 
descriptors for each document page. 

To generate textual predicates we set ndict 
= 50 and we considered the following logical 
components: title, abstract, index_term, refer-
ences, running_head, thus the following textual 
predicates have been included in the document 
descriptions: (text_in_title, text_in_abstract, 
text_in_index_term, text_in_references, text_
in_running_head). The total number of extracted 
textual features is 1,681.

Table 1. Logical labels distribution

Label No Logical 
components

Affiliation 23
Page_number 191
Figure 357
Caption 202
Index_term 26
Running_head 231
Author 28
Title 26
Abstract 25
Formulae 333
Section_title 65
Biography 21
References 45
Paragraph 968
Table 48
Undefined 1014
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An example of association rule discovered 
by SPADA at the second granularity level (l=2) 
is the following:

is _ a _ block(A) ==> specialize(A,B) 
, is _ a(B,heading), 
o n _ t o p(B,C),  C\= B,  i s _
a(C,heading), 
text _ in _ component(C,paper)  
support: 38.46 confidence: 38.46

This rule considers both relational properties and 
textual properties. Its spatial pattern involves ten 
out of 26 (i.e., 38.46%) blocks labelled as title. This 
means that ten logical components which represent 
a heading of some paper are on top of a different 
logical component C that is a heading component 
and contains the term “paper” (typically adopted 
in the sentence “In this paper we…”). 

At a lower granularity level (l=4), a similar 
rule is found where the logical component B is 
specialized as title and the component C is spe-
cialized as abstract.

is _ a _ block(A) ==> specialize(A,B) 
, is _ a(B,title), 
o n _ t o p(B,C),  C\= B,  i s _
a(C,abstract), 
text _ in _ component(C,paper)
support: 38.46 confidence: 38.46

The rule has the same confidence and support 
reported for the rule inferred at the first granu-
larity level. 

Another example of association rule is:

is _ a _ block(A) ==> specialize(A,B), 
is _ a(B,references), 
type _ text(B), at _ page _ last(B) 
support: 46.66 confidence: 46.66  

which shows the use of the predicate at _
page _ last(B) introduced in the BK. This is 

an example of pure spatial association rule. 
Finally, an example of pure textual association 

rule discovered by SPADA is

is _ a _ block(A) ==> specialize(A,B), 
is _ a(B,index _ term), 
text _ in _ component(B,index)
support: 92.0 confidence: 92.0

which simply states that a logical component 
index term contains the term ‘index’. 

The number of mined association rules for 
each logical component at different granularity 
levels is reported in Table 2. SPADA has found 
several spatial associations involving all logical 
components. Many spatial patterns involving 
logical components  (e.g., affiliation, title, au-
thor, abstract and index_term) in the first page 
of an article are found. This can be explained 
by observing that the first page generally has a 
more regular layout structure and contains sev-
eral distinct logical components. The situation is 
different for references where most of the rules 
involve textual predicates because of the high 
frequency of discriminating terms (e.g., “pp”, 
“vol”, “ieee” etc.).

future trends

Since its definition, knowledge discovery has 
witnessed the development of numerous efficient 
methods and studies to extract knowledge in the 
context of variegated real-world applications, 
many of which generate various data, organized 
in different structures and formats, distributed 
on heterogeneous sources, changing in terms of 
definition or value at different times. However, 
intelligent data analysis for this kind of complex 
data is still at the beginning. Most of data min-
ing methods operate on the classical double entry 
tabular data, and different types of unstructured 
or semi-structured data (e.g., images, natural lan-
guage texts, and HTML documents) are dealt with 
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through the application of some preprocessing 
techniques that transform them into this tabular 
format. The knowledge discovery has evolved 
following a unimodal scheme according to which 
data of a single modality (database transactions, 
text, images, etc.) are transformed into a single 
table or database relation. 

This unimodal scheme presents two strong 
limitations for many real world applications. 

First, the wealth of secondary data sources 
creates opportunities to conduct analyses on units 
described by a combination of data in more than 
one modality. For instance, a clinical file includes 
both tabular data (e.g., results of blood tests), and 
texts (e.g., a diagnosis report) and images (e.g., 
X-rays and pictures of an ultrasonography), which 
must be simultaneously considered in order to 
make correct and appropriate decisions. Moreover, 
units of analysis can be multimodal in their na-
ture. This is the case of paper documents, which 
contain text, tables, graphics, images, and maps, 

as well as Web pages, which may also include 
time-dependent (or stream) data, such as full-
motion videos and sounds. These units should be 
analyzed by means of multimodal data mining 
techniques, which can combine information of 
different nature and associate them with a same 
semantic unit. 

The second main limitation of the unimodal 
knowledge discovery scheme is the classical 
tabular representation in which original data 
are finally converted. For many applications, 
squeezing data from multiple relations into a 
single table requires much though and effort and 
can lead to loss of information. An alternative 
for these applications is the use of ILP, which 
can analyze multirelational directly, without the 
need to convert the data into a single table first. 
Multirelational data mining is also appropriate to 
analyze data available in more than one modality, 
since the normalized representation of these data 
in a relational database is clearly different and 
requires multiple tables. 

Table 2. Number of extracted association rules

No of Rules Level 1 Level 2 Level 3 Level 4

min_conf 0.3 0.3 0.3 0.3

min_supp 0.3 0.3 0.3 0.3

Affiliation 18 18 18 18

Page_Number 62 62 61 0

Figure 26 26 26 23

Caption 33 33 33 33

Index_term 45 45 45 51

Running_head 184 184 184 0

Author 30 30 30 30

Title 27 27 32 32

Abstract 103 101 101 101

Formulae 26 26 25 28

Section_Title 23 23 23 23

Biography 23 23 23 23

References 266 265 256 256

Table 30 30 30 18
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The extension of the unimodal knowledge 
discovery scheme to data with more than one 
modality is one of main trends in data mining 
and involves the development of new algorithms 
or the deep modification of old ones. Some of the 
current directions of research concern spatio-
temporal data mining (Andrienko, Malerba, May, 
& Teisseire, 2006), learning in computer vision 
(Esposito & Malerba, 2001), and multimedia data 
mining (Simoff, Djeraba, & Zaïane, 2002). Several 
research issues investigated in these areas still 
need appropriate answers. For instance, the spatial 
and temporal relations are often implicitly defined 
and must be extracted from the data: trading-off 
pre- computation (eager approach) and extraction 
on-the-fly (lazy approach) allow us to save much 
computational resources. Moreover, the resolution 
or granularity level at which multimodal data are 
considered can have direct impact on the strength 
of patterns that can be discovered: interesting 
patterns are more likely to be discovered at the 
lowest resolution/granularity level, while large 
support is more likely to exist at higher levels. A 
further issue is the generation of patterns express-
ing human-interpretable properties and relations: 
this requires that complex transformations be 
applied to describe the content of maps, images, 
and videos. For the same reason, a multimodal 
data mining algorithm should be able to take into 
account the large amount of domain independent 
knowledge nowadays available in ontologies and 
lexical resources. 

ILP remained until recently mostly conceptual, 
due to limited scalability of algorithms, their in-
ability to explicitly handle noise and uncertainty, 
and a perceived lack of killer applications. Latest 
research results show that each of these bottlenecks 
are beginning to disappear (Blockeel & Sebag, 
2003; de Raedt & Kersting, 2003; Page & Craven, 
2003), so that ILP (or its database-oriented coun-
terpart, multi-relational data mining (Domingos, 
2003)) is entering a period of rapid expansion and 
can offer a viable perspective to the evolution of 
the unimodal knowledge discovery scheme.

This chapter contributes to this evolution by 
showing a specific case study in which different 
types of information conveyed in a document (our 
unit of analysis), can be extracted and simultane-
ously considered while generating patterns. The 
proposed algorithm operates on multirelational 
data and generates (multi)relational patterns at 
different levels of abstraction, by taking into 
account background knowledge available on the 
specific domain.

conclusIon

In this chapter we have provided an overview on 
issues and solutions to the problem of extracting 
and synthesizing knowledge from document 
images in form of association rules. The neces-
sity to consider different sources of information 
when mining document data has inspired the 
investigation of spatio-textual association rules 
discovery, since it allows us to fully exploit the 
intrinsic spatial nature of document images with-
out diminishing the role of content information. 
This is a challenging task that requires several 
efforts both on data processing and on the mining 
strategy. As to data preparation, the definition of 
a semantic-safe structure of document images in-
volves several processing steps, whose design has 
been presented in this chapter. Document images 
are processed to extract semantically interesting 
layout structures and relevant content portions. 
Initially, preprocessing and segmentation of a 
document image are performed. Then, the geo-
metrical arrangement of content portions on a 
page is analyzed for layout structure extraction. 
This layout analysis step precedes the interpreta-
tion or understanding of document images whose 
aim is to label relevant layout components by 
reflecting the logical structure of the document 
page. Finally, an OCR system is applied only 
to those logical components of interest for the 
application domain in order to extract textual 
content. All these operations are implemented 
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in the WISDOM++ system, which allows us to 
extract multi-modal data (e.g., textual and spatial) 
from documents. WISDOM++ generates proper 
descriptions of document images by representing 
them as the composition of labeled layout objects 
containing text and graphic data and that are 
spatially distributed in the document page. Some 
issues concerning the spatial nature of document 
data have been tackled in the mining problem 
definition. First, implicit relations defined by the 
spatial distribution of document objects have 
been extracted and properly represented. Second, 
different levels of granularity can be defined on 
spatial objects contained in document images. 
Hence, the discovery process has been formulated 
as multi-level relational association rule mining 
from spatio-textual data. We have presented the 
extension of the spatial association rule miner 
SPADA to the extraction of spatio-textual associa-
tion rules. SPADA is based on an ILP approach and 
permits the extraction of association rules involv-
ing spatial objects at different granularity levels. 
An application of SPADA to scientific papers 
processed by WISDOM++ has been described. 
The mining process has been conducted on a set 
of document images belonging to the same class, 
namely documents presenting approximately the 
same layout/logical structure. Hence, discovered 
patterns capture regularities that implicitly define 
domain templates of documents and that can be 
used both for classification tasks and to support 
layout correction tasks. 
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AbstrAct

XML documents are becoming ubiquitous because of their rich and flexible format that can be used for 
a variety of applications. Giving the increasing size of XML collections as information sources, mining 
techniques that traditionally exist for text collections or databases need to be adapted and new methods 
to be invented to exploit the particular structure of XML documents. Basically XML documents can be 
seen as trees, which are well known to be complex structures. This chapter describes various ways of 
using and simplifying this tree structure to model documents and support efficient mining algorithms.
We focus on three mining tasks: classification and clustering which are standard for text collections; 
discovering of frequent tree structure, which is especially important for heterogeneous collection. This 
chapter presents some recent approaches and algorithms to support these tasks together with experi-
mental evaluation on a variety of large XML collections.
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IntroductIon

The widespread use of semistructured formats 
like XML for representing data and documents 
has urged the need to develop tools to efficiently 
store, access, and organize XML corpus.  With 
the development of such structured textual and 
multimedia document, the document nature is 
changing. Structured documents usually have a 
much richer representation than flat ones. They 
have a logical structure. They are often composed 
of heterogeneous information sources (e.g., text, 
image, video, metadata, etc.). Another major 
change with structured documents is the possibil-
ity to access document elements or fragments. The 
development of classifiers for structured content 
is a new challenge for the machine learning (ML) 
and information retrieval (IR) communities. A 
classifier for structured documents should be able 
to make use of the different content information 
sources present in an XML document and to clas-
sify both full documents and document parts. It 
should easily adapt to a variety of different sources 
and document models (i.e., different document 
type definitions). It should be able to scale with 
large document collections.

Handling structured documents for different 
IR tasks has recently attracted an increasing atten-
tion. Many questions are still open for designing 
such systems so that we are only in the early stages 
of this development. Most of the work in this new 
area has concentrated on ad hoc retrieval in the 
context of the recent initiative for the evaluation 
of XML retrieval (INEX) launched in 2002. Be-
sides this mainstream of research, some work is 
also developing around other generic IR problems 
like clustering and classification for structured 
documents.

The use of XML format raises a new chal-
lenge for document mining, first because of its 
new complex data structure, second by the two 
dimensions that can be dealt with: the (semi-) 

structured dimension and the content (especially 
text) dimension, and third because of the possible 
heterogeneity of the documents. Depending on 
the application or the mining objective, it may 
be relevant to consider the structure information 
alone or both the structure and the content of the 
documents.

XML documents are usually modeled as 
ordered trees, which are regarded as complex 
structures. Indeed algorithms dealing with tree 
collections may be very costly when the size of 
the documents and the collection increases. It is 
often necessary to simplify the document tree 
model in order to implement efficient algorithms 
or to adapt scalable existing clustering and clas-
sification methods. A common simplification, for 
example, is to ignore the order of tree siblings, 
yet some algorithms would take this into account 
when required by the data.

This chapter describes various tree-based 
representations of XML documents to support 
efficiently three mining tasks: frequent pattern 
extraction, classification, and clustering.  Frequent 
pattern extraction from document structure has 
been studied mostly by the database community, 
with the objective of clustering large heterogene-
ous collections of XML documents to support 
query optimisation. Classification and clustering 
using document structure, and possibly content, 
has been studied both by the IR and ML com-
munities.

We first introduce the XML tree-based model. 
Then we present some advanced algorithms for 
frequent pattern extraction in XML collections. 
In the last section we present three flexible classes 
of document representation that have been used in 
classification or clustering algorithms. Although 
we do not cover all the possible representations 
for XML documents, we show many different 
working representations that can be derived from 
the initial complex tree-like structure in order to 
support XML mining tasks.
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tree-bAsed coMPlex dAtA 
structure

XML documents are regarded as semistruc-
tured data since they offer a flexible structure 
compared to more strictly structured databases. 
For example, elements in XML documents can 
be optional or have an unfixed number of occur-
rences. The document structure can be constrained 
by the definition of a document type description 
(DTD), or a document can be just well formed. 
A well-formed XML document must conform 
to the XML grammar, which mostly means that, 
unlike HTML documents, all the tags must be 
well parenthesised and that a document must 
have a single root. 

The XML document object model (XML 
DOM) defines a standard way for accessing 
and manipulating XML documents. The DOM 
presents an XML document as a tree-structure 
(a node tree), with the elements, attributes, and 
text defined as nodes.

Figure 1 and Figure 2 present a small XML 
document describing a movie and its associated 
tree-structure. This description is very typical of 
the ones to be used for indexing and retrieving 

movies, and very different from the ones that 
would be necessary for describing the frames 
of the film itself. Note the attribute lang in the 
second title, and the repetition of the elements 
title and actor. This document here conforms 
to the DTD that is referred to in the document 
model CINEMA (second line of the document), 
not shown here.

XML documents can be modeled by unranked, 
ordered labeled trees where labels correspond to 
XML tags, which may or may not carry semantic 
information. More precisely, when considering 
only the tree structure:

• Each node can have an arbitrary number of 
children.

• The children of a given node are ordered.
• Each node has a label in the vocabulary of 

the tags.

A labeled node n in a XML document is repre-
sented by a couple n=(s, t), where s is the label of n 
in the structure of the document, and t represents 
the content of n.

Let S = {s1,...,s|S|} be the set of structural 
labels, and Ђ = {t1,...,t|Ђ|} be the set of possible 
contents. 

Figure 1. An XML document describing the movie “Pierrot le Fou,” by Jean-Luc Godard
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An  XML document can then be represented 
by a labeled tree. A labeled tree T = (N, A, 
root(T)) is an acyclic connected graph, where N 
is the set of nodes,

A ⊆ N × N is a binary relation over N defining 
the set of edges, and root(T) is a distinguished 
node called the root.

Let u ∈ N and v ∈ N be two nodes of a tree. If 
there exists an edge (u, v) ∈ A, then v is a child 
of u, and u is the parent of v.

For two nodes of a tree u and v, if there exists 
a set of nodes {x1,...,xp} such that u is the parent 
of x1, x1 is the parent of x2,..., and xp is the parent 
of v, then {x1,...,xp} is called a path from u to v. If 
there exists a path from u to v in the tree, then v 
is a descendant of u, and u is an ancestor of v.

Finally, for two nodes of a tree u and v, if there 
exists a node x1 such that both u and v are children 
of x1, then u and v are called sibling nodes.

A tree is an attribute tree if two sibling nodes 
cannot have the same label (Arimura et al., 2005) 
describe attribute trees in more detail). This 
is mostly not the case in XML documents where 
lists of elements with the same label are quite 
common. However it is possible to transform the 
original trees into attribute trees without losing 
their most canonical structural properties. 

• Document transformation: Most tree min-
ing algorithms do not directly operate on 
XML documents. They need a preprocessing 
step, which takes as input the XML docu-
ments and outputs a labeled tree for each 
document. This labeled tree reflects the tree 
structure of the original document, where the 
node labels are the tags of the XML docu-
ment. Then the documents will be further 
transformed depending on the document 
model used by the intended mining task 
and the specific algorithm.  Pre-processing 
may involve:
 Stripping off the textual content of the 

document when dealing with structure 
only

 Stripping off the XML attributes when 
they are not regarded as relevant for the 
mining task, or transforming them to 
fit in the tree structure just like XML 
elements

 Replace some tag labels with equiva-
lent labels, for example if a DTD de-
fines different types of paragraphs (p1, 
p2, p3), it may be advised to rename 
them by a common label such as parag 

Figure 2. XML tree corresponding to the document in Figure 1; nodes are represented by white round 
boxes, attributes by square boxes and leaf nodes by grey round boxes
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(this type of transformation requires 
some semantic knowledge of the DTD 
or the collection)

 Stripping off low levels of the tree 
which would be irrelevant in some 
mining tasks, for example italic or bold 
elements, or the details of a mathematic 
formula

 Text processing similar to the one 
done for flat textual documents, such 
as removing stop words

In document collections, content information 
may be composed of text and images that are 
associated with the leaves of the trees. In this 
chapter, we consider only textual parts of docu-
ments. The textual content is usually contextually 
dependent of the logical structure, which means 
that, even when interested in mining the content 
of documents, taking the structure into account 
may have a positive impact on the results. We 
also consider the case where we are interested 
only on the structure of the documents, without 
taking into account their content.

dIscoverInG frequent tree 
structure

The broad use of XML as an exchange format for 
data exported from databases results in the avail-
ability of huge collections of XML documents in 
which the labels and their nesting represent the 
underlying tree schema of the data. Those collec-
tions of XML documents are possibly structurally 
heterogeneous because exported from a mass of 
different and autonomous data sources. Discover-
ing commonalities between their structures is of 
primary importance for information integration 
and classification. In this setting, the focus is not 
the textual content of the documents but the labeled 
trees corresponding to their structure.

The discovery of frequent tree patterns from 
a huge collection of labeled trees is costly but has 

multiple applications, such as schema extraction 
from the web (or from frequent user queries like 
as proposed by (Ji, Wei, Han, & Sheng, 2005), 
automatic creation of DTDs or XML schemas 
for sub-collections, uniform querying over het-
erogeneous data, and clustering together data 
supporting a given frequent tree pattern. Note that 
the resulting clusters are not necessarily disjoint, 
which offers different viewpoints on the data and 
different entry points for querying them.

Definitions and Examples

The most important operation when searching for 
frequent tree patterns in a collection of tree data 
is to determine if a tree pattern is included in a 
tree of the data. The definition used for this tree 
inclusion operation will determine the nature of 
the patterns that can be discovered, as well as the 
complexity of the discovery problem.

A tree inclusion definition is based on a tree 
homomorphism between the tree pattern and the 
trees of the data (Kilpeläinen, 1992). Different 
definitions of tree inclusion can be considered 
according to the preservation or not of (1) the 
labels (2) the ancestor relation (3) the order of 
siblings by the homomorphism.

For the first property concerning label pres-
ervation, we will only consider homomorphisms 
preserving labels as most modern approaches use 
this kind of homomorphism, and because with 
XML it is important to preserve the labels as they 
correspond to the tags of the XML documents.

The second property determines the tolerance 
to “noise” in the nesting of the nodes. If the par-
ent-child relation is preserved, then the paths from 
root to leaves in the pattern will mimic exactly 
paths or sub-paths of the original tree. This defini-
tion is suitable for relatively homogeneous data 
(for example data coming from a single source). 
However, for truly heterogeneous data it is likely 
that a semantic relation between A and B will be 
expressed by different structural relationships be-
tween A and B within different XML documents 
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written by different organizations. In such cases, 
the ancestor preserving definition is the only one 
capable of finding common patterns. Consider 
for example the trees of Figure 3 describing the 
hierarchical relations in a public university in 
Japan and in France.

Even if both hierarchies are different, in both 
cases “Professor” is an ancestor of “PhD Student”, 
so the common pattern can be found. As simple 
as this pattern is, it shows that there are some 
common points between both trees. 

On the other hand, an inclusion definition 
based on the preservation of parent-child rela-
tion would not have found any common pattern 
because of the differences between the internal 
nodes of both trees.

The third property about the order of the sib-
lings has also an influence on the kind of data that 
it is possible to handle. As XML documents are 
ordered, one could expect the preservation of the 
order of siblings in the tree inclusion definition to 
be mandatory. This may be true for homogeneous 
collections of data, but with heterogeneous data, 
different organizations may order the nodes of the 
documents differently. Consider the two example 
documents of Figure 4 about car descriptions: 
the important point when discovering patterns 
is that a “car” has a “model” and a “color”, no 
matter their order.

The complexity of testing the tree inclusion 
varies with the definition used (Kilpeläinen, 
1992).

Figure 3. Academic hierarchical relations in Japan and in France, common pattern between both

Figure 4. Two tree structure describing car ads, the same contents is expressed with a different sibling 
order

Japan France 

Professor Professor 

Assistant Professor 

Assistant Researcher 

PhD. Student PhD. Student 

Maître de Conférence 

Professor 

PhD. Student 

Common pattern 

Car 

Model Color 

Car 

Color Model 
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frequent tree discovery Algorithms

Frequent tree discovery is a very computationally 
intensive task; hence the design of the discovery 
algorithm is of a central importance. The algorithm 
must ensure at the same time the quality of the 
outputs, a fast execution, and avoid consuming 
too much memory especially when datasets are 
big. There is currently no perfect algorithm, but 
many algorithms have been designed and each 
of them has its strengths and weaknesses. We 
review the existing algorithms, classifying them 
according to two main design principles, namely 
the edge-centric approach and the tile-centric 
approach.

Basic Definitions

Let the data be a set of trees {T1,…,TN}. 
A tree T occurs in the data if there exists a tree 

Ti in the data such that T is included in Ti.
A tree T is frequent in the data according to 

an absolute frequency threshold ε if T occurs in 
more than ε trees of the data. The trees of the 
data {Ti1,…Tim} where T occurs are called the 
support of T. 

A tree T is a closed frequent tree of the data 
if T is frequent with support {Ti1,…Tim} and T is 
the biggest tree for this support, that is, there exist 
no other frequent tree T’ with support {Ti1,…Tim} 
such as T is included in T’.

edge-centric Approaches

Designing a tree-mining algorithm from scratch 
is quite a challenge, and as is often the case with 
such problems, it is good to start on solid well 
known ground. A tree can be seen as a set of 
edges, so a frequent tree can as well be seen as a 
frequent set of edges.

Finding a frequent set of edges is easy, and 
since the seminal paper on the Apriori algorithm 
(Agrawal & Srikant, 1994), there has been a tre-
mendous amount of research on algorithms for 

discovering frequent itemsets in transactional 
data (a transaction is a set of elements and an 
itemset is a set of elements being a subset of one 
or more transactions). This was the starting point 
of the TreeFinder algorithm (Termier, Rousset, & 
Sebag, 2002), which first finds all the frequent 
set of edges, and then rebuilds the trees from the 
edges using an operation borrowed from induc-
tive logic programming (ILP), the Least General 
Generalization (Plotkin, 1970). Though being 
able to find interesting patterns by application of 
well know algorithms, the method falls short of 
completeness in some cases, reducing its practi-
cal usability.

However, many other methods for mining 
structured data have been derived from the very 
principle of the Apriori algorithm. Inokuchi, 
Washio, and Motoda (2000) presented AGM 
(Apriori Graph Miner), an algorithm for mining 
general graphs, based on the generate and test 
principle which is the heart of Apriori. Later on, 
many tree-mining algorithms were designed upon 
this principle, including specificities for efficient 
tree mining.

The idea of Apriori to find all the frequent 
itemsets is to generate candidate itemsets, and to 
evaluate the frequency of such candidates against 
the transaction database. If a candidate is frequent, 
it is flagged as such, and it will also be the base of 
new, longer candidates. The Apriori algorithm is 
levelwise: it starts from candidates with only one 
element, and then processes iteratively candidates 
with 2,3,...,n elements. The efficiency of the search 
is ensured by the antimonotony principle, which 
states that if an itemset I is infrequent, then all 
the itemsets I’ ⊇ I are also infrequent. So when 
a candidate is evaluated as infrequent, it is not 
necessary to expand it further, which reduces 
considerably the search space.

This method can be transposed nicely to trees, 
by replacing the set elements by tree edges. The 
first iteration will be to find frequent trees with 
one edge; the second one will join these trees 
with one edge to find all frequent trees with two 
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edges, and so on. However, a problem specific to 
trees arises: a tree can be built by adding edges 
in many different ways, and so all the different 
intermediary steps leading to the same tree will 
be considered by the algorithm, as shown in 
Figure 5.

This would result in doing a lot of redundant 
work for each tree. The solution to this problem, 
found independently by Asai, Abe, Kawasoe, 
Arimura, Sakamoto, and Arikawa (2002) and 
Zaki (2002), is to force the edge expansion to be 
done in a unique way, along the rightmost branch 
of the tree. This technique is called rightmost 
tree expansion and is the basis of most frequent 
tree mining algorithms. Both of the previously 
cited algorithms mine ordered trees. To be able 
to mine unordered trees, (Asai, Arimura, Uno, 
and Nakano, 2003) and Nijssen and Kok (2003) 
independently proposed to use canonical forms. 
A canonical form of a tree pattern is a unique 
representative for all tree patterns that differ only 
on the order of the siblings.

However, finding all the frequent tree patterns 
is a very computation-time expensive task. Chi, 

Yang, Xia, and Muntz (2004) proposed the CM-
TreeMiner algorithm that improves the previous 
algorithms by searching only closed frequent 
trees, with performance improvements over one 
order of magnitude. Recently, Arimura and Uno 
(2005) proposed the CLOATT algorithm for min-
ing closed frequent attribute trees, with a proved 
output-polynomial complexity.

tile-centric Approach

The previous approaches discover the frequent 
tree patterns by reconstructing the tree’ s edge 
by edge. However, especially in case of trees 
with large number of nodes, it can be beneficial 
to have an approach that expands trees with 
several edges at a time instead of single edges. 
Such an approach is represented by the Dryade 
family of algorithms (Termier, Rousset, & Sebag, 
2004; Termier, Rousset, Sebag, Ohara, Washio, & 
Motoda, 2005), in which the closed frequent trees 
of a given step are built by hooking at the leaves 
of the (closed) frequent trees of the previous step 
full subtrees of depth 1 called tiles. In this way, 

Figure 5. All the paths to build a single tree by edge adding, and the redundancies induced by creating 
all these intermediary steps
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the closed frequent trees are built by increasing 
levels of depth.

•	 Definition:	A tile is a closed frequent tree 
of depth 1.

It can easily be shown that any closed frequent 
tree can be decomposed into a set of tiles. So the 
approach used by the Dryade family of algorithms 
is to first compute all the tiles that are in the data, 
and then to assemble these tiles together in order 
to discover the closed frequent trees.

This approach will be illustrated through the 
DryadeParent algorithm (Termier et al., 2005). 
This algorithm uses the same tree inclusion defini-
tion as CMTreeMiner (the isomorphism preserves 
the parent-child relation and does not preserve 
siblings order), but is limited to the discovery of 
attribute trees. The trees of Figure 6 will be used 
as data for a running example, with a minimal 
frequency threshold of two trees.

The algorithm can be divided into several 
steps. The preliminary step is to discover the tiles. 
Then the iterative part of the algorithm consists 
in hooking together those tiles.

• Discovering the tiles: As defined before, the 
tiles are the closed frequent trees of depth 1. 
Instead of finding all the tiles, it is simpler 
to solve the problem of finding all the tiles 
whose root has label a, for any a ∈ S. This 
problem boils down to finding all the closed 
frequent sets of children for the nodes of 
label a in the data. Using any closed frequent 
itemset miner can easily solve this problem. 
DryadeParent uses the LCM2 algorithm 
(Uno, Kiyomiet, & Arimura, 2004), which is 
the fastest algorithm available for this task. 
By iterating this method on all the labels of 
S, it is then easy to find all the tiles shown 
in Figure 7.

• Hooking the tiles: The previously com-
puted tiles can then be hooked together, that 
is, a tile whose root has label a becomes 
a subtree of another tile having a leaf of 
label a to build more complex trees. A 
proper strategy is needed to avoid as much 
as possible constructing attributes trees that 
would be found unclosed in a later itera-
tion. The DryadeParent’s strategy consists 
in constructing attributes trees, which are 
isomorphic to the k first depth levels of the 

Figure 6. Example data
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patterns, each iteration adding one depth 
level to the isomorphism.

For this purpose, the first task of DryadeParent 
is to discover in the tiles those corresponding to 
the depth levels 0 and 1 of the patterns, the root 
tiles. Some of these tiles can be found immediately 
as they cannot be hooked on any other tile: they 
will be the starting point for the first iteration 

of DryadeParent. This is the case for Ti1 in the 
example. For the rest of the root tiles, they can 
also be used as building blocks for other patterns: 
they will be used as root of a pattern only when it 
will become clear that they are not only a build-
ing block, to avoid generating unclosed attribute 
trees. In the example, this is the case for Ti4, which 
can be hooked on Ti1. Only in iteration 2 will this 
tile be used as a root tile to construct the pattern 

Figure 7. The tiles found in trees of figure 6 with minimal frequency threshold set to 2

A 

B C 

Ti1 B 

D E 

Ti2 E 

G H 

Ti3 C 

F 

Ti4 

F 

I 

Ti5 B 

G 

Ti6 C 

H 

Ti7 

      Support:  {T1, T2, T3, T4}    {T1, T2}          {T1, T2}      {T1, T2, T5} 

       Support:        {T1, T2, T5}       {T3, T4}           {T3, T4} 

A 

B C 

A 

B C 

A 

B C 

D E F H G 

C 

F 

C 

F 

I 

A 

B C 

D E 

G H 

F 

Iteration 1 

Iteration 2 

Iteration 3 

P1 

P2 

P3 P4 

Support: {T1, T2, T3, T4} 

Support: {T1, T2} 
Support: {T3, T4} 

Support: {T1, T2, T5} 

Support: {T1, T2, T5} 

Support: {T1, T2} 

I 

Figure 8. DryadeParent discovery process: The closed frequent attribute trees outputted as result are 
enclosed in dashed boxes



�0�  

Mining XML Documents

P4 (see Figure 8 for the closed frequent patterns 
discovered in the data). The computation of the 
set of tiles that must be hooked to the root tiles for 
building the next depth level of closed frequent 
attribute trees is delegated to a closed frequent 
itemset mining algorithm. They become starting 
points for the next iteration.

The whole process is shown in Figure 8. On 
the root tile Ti1 (which is also the closed frequent 
pattern P1), one can hook the tiles {Ti2, Ti4} or the 
tiles {Ti6, Ti7}, the latter leading to the pattern P2. 
Note the different supports of the two constructed 
attribute trees. From the hooking of {Ti2, Ti4} 
on Ti1, one can then hook the tile Ti3, leading to 
the pattern P3. The tile Ti4 is not only a building 
block of P1, it also has an occurrence which does 
not appear in P3 (see tree T5): it is used as a root 
tile, and the only possible hooking on it is Ti5, 
leading to the pattern P4.

The soundness and completeness of this hook-
ing mechanism have been proved (Termier, 2004). 
It has also been shown (Termier et al., 2005) that 
DryadeParent has excellent computation-time 
performances. It over performs by several orders 
of magnitude CMTreeMiner when the closed 
frequent trees to be found have a high average 
branching factor. Concretely, this means that when 
handling thousands of XML documents, contain-
ing a pattern having 100 nodes, DryadeParent will 
be able to answer in few seconds, sometimes nearly 
instantly, allowing real-time use in an interactive 

process. On the other hand, CMTreeMiner will 
need several minutes to handle the same data, 
making interactive use problematic.

clAssIfIcAtIon And 
clusterInG

In this section, we consider various approaches 
to XML document classification and clustering, 
two important mining tasks largely explored for 
data or textual documents. As for XML docu-
ments, these tasks can be split into sub-tasks that 
involve the structure only or both the structure 
and content of the documents.

Classification and clustering are based on a 
notion of distance. Since XML documents are 
represented by trees, a natural idea to adapt tra-
ditional methods to XML documents would be to 
use a tree distance, for example, the edit distance 
between two ordered labeled trees proposed by 
Zang and Shasha (1989) that consists in counting 
the number of editing operations (add, delete, 
change the label of a node, etc.) needed to trans-
form a tree into another one. Tree edit distances 
may differ by the set of editing operations they 
allow. However, algorithms based on tree edit 
distances (Chawathe, et al., 1996; Costa, et al., 
2004; Nierman & Jagadish, 2002) have a time 
complexity O(MN), M and N being the number 
of nodes in the two trees to be compared, which 

Figure 9. Tree summary
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is too high for practical applications. Some ap-
proaches therefore replace the original trees by 
structural summaries (Dalamagas, Cheng, Win-
kel, &  Sellis, 2004) or s-graphs (Lian, Cheung, 
Mamoulis, & Yiu, 2004) that only retain the in-
trinsic structure of the tree: for example reducing 
a list of elements to a single element, or flattening 
recursive structures. Figure 9 gives an example 
of tree summary.

Other distances have been proposed. Flesca, 
Manco, Masciari, Pontieri, and Pugliese (2002) de-
fine a Discrete Fourier transform distance using a 
linear encoding of the document trees based on 
the depth-first, left-to-right traversal order. Lian 
et al. (2004) use a distance based on bit string 
encodings of the edges of the s-graphs.

However, the above approaches are limited 
to clustering documents based only on their 
structure. Besides, computing distances directly 
between trees may consume a lot of time, and the 
problem of providing interpretable results remains 
an open issue. That is why some methods based on 
different ways for representing XML documents 
were recently designed.

In the next sections we present three differ-
ent XML document representations, based on 
structure or both structure and content that have 
been used in combination with different cluster-
ing or classification approaches. First we present 
an attribute-value representation combined with 
classification and clustering methods based on 
decision-trees or probabilistic models; second a 
representation based on document paths, regarded 
as words, with a k-means like clustering algorithm; 
finally a Bayesian network model used as a gen-
erative process model for classification.

representation using 
Attribute-value structure

Candillier, Tellier, and Torre (2006) investigate 
the use of a different kind of representation for 
the manipulation of XML documents. The idea is 
to transform the trees into sets of attribute-values 

pairs, so as to be able to apply various existing 
methods of classification and clustering on such 
data, and benefit from their strengths. They pro-
pose to construct the following attributes from a 
set of available XML trees: 

• The set of tags labeling the nodes of the 
trees

• The set of parent-child and next-sibling 
relations (whose domain is the set of pairs 
of tags labeling the nodes)

• The set of distinct paths (including sub-
paths), starting from the root (whose domain 
is the set of finite sequences of tags labeling 
the nodes)

So they create as many new attributes as distinct 
features are encountered in the training set. And 
for each of them, their value for a given docu-
ment is the number of their occurrences in this 
document. Finally, they also define as many new 
attributes as there are absolute distinct node posi-
tions in the trees. For every identifier of a node 
position, the value of the attribute for a document 
is the arity of the node, which is the count of its 
child nodes in the document. So the new intro-
duced attributes all take their value into the set 
of natural numbers.

Such representation could lead to a high 
number of generated attributes. So the algorithms 
used to tackle such new datasets should be able 
to handle many attributes, and to perform feature 
selection during their learning process. In a clas-
sification task, C5 (Quinlan, 1998) is for example 
well suited. In a clustering task, a subspace cluster-
ing algorithm, that is a clustering algorithm able 
to characterize every distinct cluster on a limited 
number of attributes (eventually distinct for each 
cluster), should be used.

Thus, they used SSC (Candillier, Tellier, Torre, 
& Bousquet, 2005), a subspace-clustering algo-
rithm that has been shown to be effective, and 
that is able to provide as output an interpretable 
representation of the clusters found, as a set of 
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rules. They adapted SSC for the clustering and the 
classification of XML documents, so that the new 
methods also benefit from the major advantage of 
producing classifiers that are understandable.

So far, this strategy has been applied to the 
INEX 2005 collections for mining XML docu-
ments, both for the classification task and for the 
clustering task using the structural description 
of XML documents alone.  The results obtained 
with such a strategy are very good. In particular, 
it has been shown to be robust even with noisy 
data. Besides, the produced classifiers are very 
understandable. Figure 10 shows for example the 
decision tree obtained when classifying a collec-
tion of movie description into eleven classes. For 
instance, the membership to class 8 only depends 
on the presence of tags named movie, film, table, 
and li, and the absence of parent-child relation 
between tags named p and i in the document.

Tag(T) refers to the number of occurrences 
of the given tag T in the document, Parent(A-B) 
to the number of parent-child relations between 

tags A and B, Nb(0.0.0) to the arity of the first 
grand-child node from the root, S* to compari-
sons between models based on the next-sibling 
relations, and P* to a comparison based on the 
paths in the document.

By using such a transformation strategy, part 
of the information included in the trees is lost, 
but the data are manipulated more easily and the 
results are more understandable. However, some 
differences between trees could be hidden when 
using such a transformation. Indeed, a swap be-
tween two sub-trees of a given tree can lead to 
a very different tree, although its attribute-value 
representation proposed here would be very simi-
lar to the one of the initial tree. So other types of 
transformation should be considered when the 
order of siblings is to be taken in account.

Finally, such a strategy should be generalized 
in order to perform classification or clustering 
of XML documents collections using both the 
structural description and the textual content of the 
documents. The most direct way to do this would 

Figure 10. Example of understandable classifier obtained on an XML data collection by transforming 
the documents into sets of attribute-values. 
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be to consider the textual content of the docu-
ments as simple bag-of-words, but more complex 
transformations could also be considered.

representing documents by a set of 
Paths

Vercoustre, Fegas, Gul, and Lechevallier (2006) 
have been motivated by clustering XML docu-
ments based on their structure only or both the 
structure and content. Like in the previous ap-
proach, they use a simplified tree representation 
to avoid the complexity problems of tree clus-
tering. They define a flexible representation of 
XML documents based on a subset of their paths, 
generated according to some criteria, such as the 
length of the paths, whether they start at the root 
(root paths), or end at a leaf (leaf ending paths). 
By considering those sub-paths as words, they can 
use standard methods for vocabulary reduction 
(based on their frequency), and simple clustering 
methods such as K-means that scale well.

Basic Definitions

Let p= {x1,...,xp} be a path of tree T as defined in 
section 2:
 
• p is a root path if  x1  = root(T); p is a leaf 

ending path if xp is a leaf of T; p is a complete 
path if it is a root path and a leaf ending path. 
The length of a path is the number of nodes 
in the path. A path expression is represented 
by the expression s= s1.s2…sp-1.sp where si 
=label(xi). Such expressions do not distin-
guish between two siblings with the same 
label, which means that, in this approach, 
two paths are regarded as equivalent of they 
correspond to the same path expression.

Let u=(s, t) be a node of tree T, where t is the 
textual content of u. Let w be a word. 

u contains w if  w  ⊂  t or if there exists a path 
{u, …, v}, v=(s’,t’) such that w  ⊂  t'.

If  u contains w, and p= {x1,...,u} is a path, 
we call p’ =(p,w} a text path and we code it by  
s1.s2…sp-1.sp.w where si =label(xi).

It means that a text path extends a path p (pos-
sibly nonterminal) with a word contains in any 
of the leaves of its subtrees.

If  W={wi | wi ⊂ t} then s1.s2…sp-1.sp.wi, for wi  
∈ W, are all the text paths associated to path p.

Using those definitions, we can now introduce 
a family of representations for an XML document 
d using the standard vector model, as:

R(d)= Σi fi pi

for all path pi = s1.s2…sp-1.sp  in d where m ≤ |pi| ≤ 
n, 1 ≤ m ≤ n, m and n two numbers given a priori; 
fi is the frequency of the path pi in d. 

When interested by both the structure and the 
content of documents, it is possible to use both text 
paths and paths, or text paths only. For specific 
values of m and n, this model is equivalent to some 
other models that have been proposed before:  for 
m=n=1, it corresponds to the naïve model used 
by Doucet & Ahonen-Myka (2002), where docu-
ments are represented by a bag of tags, or a bag 
of words and tags. Representing documents by 
their complete paths has been proposed by Yoon, 
Raghavan, Chakilam, and Kerschberg (2001) in 
their bitmap model, as well as an extension using 
complete text paths.

Yi and Sundaresan (2000) propose the struc-
ture vector model where a document is represented 
by all its paths of length between 1 and the height 
h of the document tree. The frequency of terms 
associated with a path is relative to the subtree 
associated with that path. The representation de-
veloped by Liu, Wang, Hsu, and Herbert (2004) is 
based on paths of length smaller than L, although 
they can also fix the level in the tree where the 
paths must start. It also includes the definitions 
of leaf-ending paths as well as root-beginning 
paths, of length less than L.  

The motivation for a flexible choice of paths in 
the document is that some analysis or clustering 
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tasks may be interested in the top part of the tree, 
the lower parts of the tree, or possibly parts in 
the middle. An example would be clustering very 
heterogeneous collections based on the structure, 
where the partition can be done by looking at the 
top-level elements only. At the opposite end of the 
spectrum, if one wants to cluster documents based 
mostly on the text, it could be appropriate to add 
some limited context just above the text (leaf-
ending paths). Another motivation in using paths 
was to fully represent lists of elements, through 
their path frequency, as lists are an important 
feature of XML documents that should be taken 
into account in some clustering tasks.  

By considering those paths as words (with 
their frequency), it is possible to use standard 
methods for vocabulary reduction, and simple 
clustering methods such as K-means. However, 
clustering algorithms based on the vector model 
rely on the independence of the various dimen-
sions (modalities) for calculating the distance 
between the vectors.

Although it is not always verified in practice 
with words in texts, it usually works fine. In the 
case where words are paths in the document 
tree, there is an obvious dependency between 
embedded sub-paths. To deal with the problem of 
dependency, one can partition the paths by their 
length and treat each set of paths as a different 
variable, using a clustering algorithm such as the 
one proposed by Celeux, Diday, Govaert, Leche-
vallier, and Ralambondrainy (1989) in which the 
standard Euclidian distance between clusters is 
replaced by a distance that takes in account the 
different variables and the modalities within the 
variables as follows:

  2

1 1
( , ) ( )

kmp
k k
j j

k j
d x y x y

= =

= -∑∑

where p is the number of variables, and mk is the 
number of modalities for the variable k.

The approach has been successfully applied to 
the INEX collections for the structure only tasks. 

As an output, the clustering algorithm provides 
not only the set of clusters but discriminate repre-
sentatives for each cluster that characterize each 
of them. Since the representatives are paths, it 
could be interesting to reconstruct subtrees from 
those paths in order to provide a more compact 
representation of the clusters. This should be 
feasible, at least for root paths.

When considering document content as well as 
structure, paths are extended with the individual 
words of the text contained in the terminal node 
of each path (not necessarily a leaf node). While 
it works well for relatively small collections, it 
does not scale well for very large collections and 
broad trees where the number of paths, especially 
leaf-ending paths would grow exponentially. 
Complementary ways of reducing the vocabulary 
are needed, possibly from relative frequency of 
words within their specific paths rather than within 
the document they belong to. 

stochastic Generative Model 

Generative models are well known in the field of 
Machine Learning. They are used for different 
applications and particularly for classification 
and clustering. Generative models allow us to 
compute the probability of an XML document 
using a set of parameters describing a stochastic 
process (that is P(d/q) where d is an XML docu-
ment and q is a set of parameters). In this part, 
we describe the family of models proposed by 
Denoyer and Gallinari  (2004). They propose to 
model the statistical dependencies between the 
nodes of a semistructured document using the 
belief network formalism. These models consider 
that a document d is the realization of a random 
vector D whose elements are discrete random 
variables corresponding to each structural node 
or content node (text nodes) of the document. Each 
document is transformed into a belief network, all 
the networks sharing the same set of parameters. 
The probability of a document is then computed as 
the joint probability of the corresponding network 



  ���

Mining XML Documents

and this probability can be computed under differ-
ent assumptions of statistical dependencies. Each 
assumption aims at capturing a particular type of 
structural information, for example the left-sibling 
information, or the parent information. 

This model is able to deal with a very large 
amount of data. Moreover, its learning complexity 
is linear with respect to the size of the documents. 
This type of model has been used both for the cat-
egorization and the clustering of XML documents 
and the authors have proposed extensions that 
take into account different information content 
(text, pictures, etc.) for the multimedia-filtering 
task (Denoyer, Vittaut, Gallinari, Brunesseaux, & 
Brunesseaux, 2003). A discriminative algorithm 
has also been developed for the categorization 
task. On different XML corpora, this model has 
better performances than state-of-the art models 
for categorization of textual documents that do 
not use the structural information (Denoyer & 
Gallinari, 2004). 

For simplification, we describe the model 
only for textual documents, using the example 
of Fig. 11. Extensions for multimedia documents 
are considered by Denoyer, Wisniewski, and 
Gallinari (2004).

Modeling documents with bayesian 
networks

Let us first introduce some notations: 

• Let C be a discrete random variable which 
represents a class from the set of classes 
C. 

• Let Λ be the set of all the possible labels for 
a structural node. 

• Let V  be the set of all the possible words.  
V* denotes the set of all possible word se-
quences, including the empty one. 

• Let d be a structured document consisting 
of a set of features  where  is the label of the 
i-th structural node of d (),  is the textual 
content of this i-th node () and |d| is the 
number of structural nodes. d is a realization 
of a random vector D. In the following, all 
nodes are supposed to have a unique identi-
fier, indicated here as superscript i. 

Bayesian networks offer a suitable framework for 
modeling the dependencies and relations between 
the different elements in a structured document. A 
network model is associated with each document. 

Figure  11.  A tree representation for a structured document composed of an introduction and two sec-
tions. White-background  nodes and pink/grey background nodes are respectively structural and content 
nodes.
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Since the focus here is on the logical document 
structure, each network is defined according to 
the corresponding document structure. For the 
classification task, the network parameters are 
learned using all the documents from the same 
class in the training set. Documents from the same 
class then share their parameters and there is one 
set of such parameters for each class. 

Different networks could be used for modeling 
a document, depending on which type of relation 
one would like to take into account. We only 
consider here the explicit document structure and 
we will not try to uncover any hidden structure 
between the document elements. Some of the 

natural relations which could then be modeled are: 
“is a descendant of” in the document tree, “is a 
sibling of”, “is a successor of”, given a preorder 
visit of the document tree, and combinations of 
these different possibilities. Figures 12 and 13 give 
two examples of document models encapsulating 
different relations for the document tree in Figure 
11. In the simplest one (Figure 12), the network 
structure is similar to the document tree structure, 
as it only encodes the “is a descendant of” rela-
tion. The second model (Figure 13) makes use of 
a tree augmented network (TAN) at each level of 
the tree and takes into account an ordering rela-
tion between structural siblings and subtrees. As 

Figure 12.  The final Bayesian network encoding “is a descendant of” relation

Figure 13.  The final Bayesian network making use of a TAN network at each level of the tree
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usual there is a trade-off between complexity and 
efficiency. Tests performed with different models 
did not show a clear superiority of one model 
over the others with respect to the classification 
performances. For simplicity, from now on, we 
then consider tree-like Bayesian networks. The 
network structure is built from the document tree, 
but need not be identical to this tree.

A tree-like Model for structured 
Document Classification

For this model, we make the following assump-
tions: 

• There are two types of variables correspond-
ing to structure and content nodes. 

• Each structure node may have zero or many 
structure sub-nodes and zero or one content 
node. 

• Each feature of the document depends on 
the class c we are interested in. 

• Each structural variable  depends on its 
parent  in the document network. 

• Each content variable  depends only on its 
structural variable. 

The generative process for the model corresponds 
to a recursive application of the following process: 
at each structural node s, one chooses a number 
of structural sub-nodes, which could be zero, and 
the length of the textual part if any. Sub-nodes 
labels and words are then sampled from their 
respective distribution, which depends on s and 
the document class. The document depth could 
be another parameter of the model. Document 
length and depth distributions are omitted in the 
model since the corresponding terms fall out for 
the classification problems considered here.

Using such a network, we can write the joint 
content and structure probability that document 
d belongs to class c: 

   
| | | |
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where (a) and (b) respectively correspond to 
structural  and textual  probabilities. Structural 
probabilities  can be directly estimated from data 
using some smooth estimator.

Since  is defined on the infinite set, we shall 
make additional hypothesis for estimating the 
textual probabilities . In the following, we use a 
Naive Bayes model for text fragments, but this 
is not a major option and other models could do 
as well. Let us define  as the sequence of words  
where k and  is the number of word occurrences 
i.e. the length of. Using Naive Bayes for the 
textual probability, the joint probability for this 
model is then:
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learning 

In order to estimate the joint probability of each 
document and each class, the model parameters 
must be learned from a training set of documents. 
We do not describe here the learning algorithm 
which is fully explained in (Denoyer & Gallinari, 
2004).

experiments 

Many experiments have been made with this 
model on different corpora (INEX, WebKB, 
NetProtect,WIPO). Denoyer and Gallinari (2004) 
for more details on these collections. Table 1 
gives the results of different models on three 
XML corpora: 

• The INEX corpus composed of about 12,000 
XML documents that describe scientific 
articles (18 categories)
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•	 The	 WIPO	 corpus	 composed	 of	 10,900	
XML	documents	that	describe	patents	(15	
categories)

•	 The	 WebKB	 corpus	 composed	 of	 8,282	
XHTML	documents	(7	categories).

The	different	methods	are	compared	using	a	clas-
sic	F1	score	(micro	and	macro):

	
•	 NB	is	the	Naive	Bayes	method	on	flat	docu-

ments
•	 RB	is	the	model	proposed	here
•	 SVM	TF-IDF	is	 the	classic	SVM	method	

for	 classification	 of	 flat	 documents	 using	
TF-IDF	vectors

•	 Fisher	RB	 is	a	kernel	method	 that	allows	
us	to	use	our	belief	network	model	with	a	
support	vector	machine.

The	results	in	Table	1	show	that	the	RB	model	
improves	the	baseline	models.

Future Trends for the Stochastic 
Generative Model

We	have	presented	a	generative	model	for	struc-
tured	 documents.	 It	 is	 based	 on	 Bayesian	 net-
works	and	allows	modeling	the	structure	and	the	
content	of	documents.	It	has	been	tested	for	the	
classical	task	of	whole	document	classification.	
Experiments	show	that	the	model	behaves	well	
on	a	variety	of	situations.	Further	investigations	
are	needed	for	analyzing	its	behavior	on	docu-
ment	fragments	classification.	The	model	could	
also	be	modified	for	 learning	implicit	relations	
between	 document	 elements	 besides	 using	 the	
explicit	 structure.	An	 interesting	 aspect	 of	 the	
generative	model	is	that	it	could	be	used	for	other	
tasks	relevant	to	IR.	It	could	serve	as	a	basis	for	
clustering	 structured	 documents.	 The	 natural	
solution	 is	 to	 consider	 a	 mixture	 of	 Bayesian	
network	 models	 where	 parameters	 do	 depend	

Micro-F1 Macro-F1

NB 0.59 0.605

RB	model 0.619 0.622

SVM	TF-IDF 0.534 0.564

Fisher	RB 0.661 0.668

INEX

Micro-F1 Macro-F1

NB 0.801 0.706

RB	model 0.827 0.743

SVM	TF-IDF 0.737 0.651

Fisher	RB 0.823 0.738

WebKB

Micro-F1 Macro-F1

NB 0.662 0.565

RB	model 0.677 0.604

SVM	TF-IDF 0.822 0.71

Fisher	RB 0.862 0.715

WIPO

Table 1. Results of the RB model on different XML textual corpora
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on the mixture component instead of the class, 
as it is the case here. Schema-mapping and au-
tomatic document structuring are new tasks that 
are currently being investigated in the database 
and IR communities. The potential of the model 
for performing inference on document parts when 
information is missing in the document will be 
helpful for this type of application. Preliminary 
experiments about automatic document structur-
ing are described by Denoyer et al. (2004).

conclusIon

XML is becoming a standard in many applications 
because of its universal and powerful tree struc-
ture. On the Internet for example, unstructured 
documents are being replaced by such structured 
documents, so that approaches that have been 
designed to tackle Internet resources need to be 
revisited in order to take advantage of the new 
structured nature of the documents.

The tree structure of XML documents can be 
seen as information by itself. When searching for 
the origin of a document for example, looking at its 
tree structure can be sufficient because different 
sources may use different structures to generate 
their documents. Clustering XML documents us-
ing their structure only can help methods designed 
to handle homogeneous XML collections work 
also on heterogeneous collections.

But taking the structure of the documents into 
account may also have a positive impact on the 
results even if we are only interested in classify-
ing the documents according to their content. The 
organization of a document may indeed differ 
from one context to another. The structure of a 
document can for example help distinguish an 
article concerning history to another one about 
science. Moreover, generic models that combine 
structure and content may help put the right context 
or weight on smaller parts of the documents.

On the other hand, many existing approaches 
designed to handle data represented by trees 

suffer from high complexities, limiting their use 
to small volumes of data. Hopefully, as we have 
shown in this chapter, some transformations of 
XML tree structures can be used to simplify 
their representations, still preserving some of 
their interesting structural properties, and thus 
providing new ways to efficiently manage high 
volumes of such data.

As a summary, since XML collections will 
become more and more important, and since their 
tree structure can help improve ML and IR tasks 
on such data, a good compromise has to be found 
when designing a new method for XML, so that 
the information contained in the structure is used 
but does not affect too much its complexity.

Another important challenge concerns the 
output provided by such methods. In that field, we 
have highlighted some methods that can exhibit 
the resulting tree patterns, classifiers or cluster 
representatives, and therefore can support analysts 
in mining tasks.
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AbstrAct

We study the issue of discovering and tracing thematic topics in a stream of documents. This issue, often 
studied under the label “topic evolution” is of interest in many applications where thematic trends should 
be identified and monitored, including environmental modeling for marketing and strategic manage-
ment applications, information filtering over streams of news and enrichment of classification schemes 
with emerging new classes. We concentrate on the latter area and depict an example application from 
the automotive industry—the discovery of emerging topics in repair & maintenance reports. We first 
discuss relevant literature on (a) the discovery and monitoring of topics over document streams and (b) 
the monitoring of evolving clusters over arbitrary data streams. Then, we propose our own method for 
topic evolution over a stream of small noisy documents: We combine hierarchical clustering, performed 
at different time periods, with cluster comparison over adjacent time periods, taking into account that 
the feature space itself may change from one period to the next. We elaborate on the behaviour of this 
method and show how human experts can be assisted in identifying class candidates among the topics 
thus identified.
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IntroductIon

“A picture is worth thousand words.” However, 
in many applications, natural language is the 
main medium of information dissemination, 
often enriched with acronyms, shorthands or 
domain-specific jargon. Business analysts, jour-
nalists, project managers and project proposers, 
quality assessors in the manufacturing industry 
or in pharmaceutics, researchers, reviewers, stu-
dents, and teachers rely on a stream of texts from 
multiple document sources to acquire the most 
up-to-date information and to identify ongoing, 
respectively declining trends on their subjects of 
interest. Recently, much research is devoted to 
the identification of trends in texts, with some 
emphasis on newspaper news, business news and 
scientific literature.

A particularly demanding application of trend 
discovery from texts concerns the identification of 
emerging topics that are appropriate as additional 
classes in an existing document classification 
scheme. Example areas that exhibit the necessity 
of refining classification schemes over documents 
are customer relationship management (CRM) and 
quality assessment in manufacturing. In CRM, 
all interaction channels between a customer and 
the company should be exploited to achieve bet-
ter customer understanding, proactive portfolio 
design and increase of customer lifetime value. 
Of particular interest is the interaction between 
customers and after-sales support centers that deal 
with complaints, reclamations, suggestions for 
product improvements, and requests for product 
maintenance. The informal documents (also: pro-
tocols of phone calls) that capture this interaction 
can deliver valuable information about the way 
customers perceive a product and about potential 
product improvements or extensions. In the manu-
facturing industry and in pharmaceutics, customer 
responses, maintenance requests, and reports on 
shortcomings are also important for quality as-
sessment. Both for CRM and quality assessment, 
topics that emerge and persist are potential classes 

in a taxonomy of customer profiles, of product 
desiderata, or of product malfunctions.

The information sources containing data 
about such potential classes are mostly collec-
tions of jargon documents: Reports on product 
maintenance and repairs are written by engineers, 
while reclamations may combine texts written 
by customers and texts written by employees 
of the after-sales service. Since such reports are 
collected from all service points, they are char-
acterized by differences in language, syntax, 
sentence formation, presence of typographical 
and linguistic errors, level of detail and use of 
abbreviations, and may even differ in their base 
vocabulary. This makes the discovery of emerging 
topics more challenging than the corresponding 
analysis of published news or scientific abstracts 
that have been subjected to a careful reviewing 
or editorial check before being published for a 
broad audience.

In this chapter, we study the issue of topic 
evolution over an accumulating stream of docu-
ments. In the next section we discuss advances on 
topic evolution, where a topic is a description of 
a document group, extracted over an accumulat-
ing document stream. Advances in this area have 
their origin in the field of “topic detection and 
tracking” (TDT), although the notion of evolving 
topic is different from the original definition of a 
topic as a story. In the section “Monitoring Cluster 
Evolution,” we will turn to generic approaches 
for the discovery and interpretation of changes in 
clusters. When discussing methods in these two 
sections, we elaborate on their applicability for 
the discovery and the evolution of classes over 
noisy document streams.

Section “A Topic Evolution Method for a 
Stream of Noisy Documents” contains our own 
approach that builds upon generic methods for 
cluster evolution. Our method has been motivated 
by and tested upon a stream of repair and main-
tenance reports on newly introduced vehicles. 
This application from the automotive industry 
is characterized by small noisy documents that 
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can deliver insights of immense value for product 
quality assessment and customer satisfaction. The 
last section concludes our study with a summary 
and outlook.

evolvInG toPIcs In clusters

Research methods on topic evolution consider a 
“topic” as a condensed representation of docu-
ments constituting a group. This group may be a 
cluster of similar documents or may be a whole 
document collection. For example, Ipeirotis et 
al. (2005) consider all documents in a text data-
base as one group, which they summarize into 
a “content summary.” Aggarwal and Yu (2006) 
rather define a “cluster droplet,” a summarized 
representation of the values encountered in the 
members of a cluster. In other studies, a topic is 
a “cluster label,” comprised of the dominant or 
otherwise characteristic words of the cluster’s 
members (for instance cf. Mei & Zhai 2005). We 
use the neutral term “group description” as a set 
of features that are representative of the group’s 
members.

Topic evolution can be observed as a particular 
thread of “topic detection and tracking” (TDT) as 
defined in Allan (2002). We briefly describe TDT 
and its tasks, before concentrating on methods for 
the detection of changes in document summaries, 
document cluster labels, and document groups.

tasks of topic detection and 
tracking

The subjects of topic detection and topic track-
ing are defined in Allan (2002), where the five 
tasks of TDT are enlisted. As stated in that book, 
TDT concentrates on the detection and tracking 
of stories (a “topic” is a story) and encompasses 
the tasks of (1) story segmentation, (2) first story 
detection, (3) cluster detection, (4) tracking, and 
(5) story link detection.

There is a conceptual similarity between TDT 
and the identification of emerging topics as po-
tential classes over a (noisy) document stream. 
However, these “topics” are not “stories” in the 
TDT sense: It is not of interest to detect a story 
and then track it across documents, as in tasks 
(2) and (4), but rather identify documents across 
different time periods, which, when taken together 
contribute to the same, a priori unknown but sta-
tistically important “topic.” This separation has 
been first elaborated in the survey of Kontostathis, 
Galitsky, Pottenger, Roy, and Phelps (2003), 
where the new task of topic trend discovery was 
introduced. However, as we explain in (Schult 
& Spiliopoulou, 2006a), the methods presented 
under this task in Kontostathis et al. (2003), such 
as Pottenger & Yang (2001) and Roy, Gevry, 
and Pottenger (2002), rely on cross-references 
among documents. This corresponds to task (5) 
of the TDT agenda. In a stream of independent 
documents, there are no cross-citations, so these 
methods do not apply.

tracing changes in summaries

Ipeirotis et al. (2005) trace content summary 
changes, whereas a “content summary” refers to 
a database of documents. The motivation is that 
content summaries are valuable for the selec-
tion of the databases that should be queried in 
the first place. Despite the difference in focus 
between their work and the issues addressed 
here, the methodology is transferable: A content 
summary, as defined by Ipeirotis, Ntoulas, Cho, 
and Gravano (2005) has similarities to a cluster 
label. The authors distinguish between a complete 
content summary C(D) that consists of the number 
of occurrences of each word w ∈ D and an ap-
proximate content summary Ĉ(D) computed by 
document sampling.

To predict when a content summary change 
occurs, Ipeirotis et al. (2005) apply survival analy-
sis, a method originally designed to model/predict 
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the length of survival of patients under different 
treatments. In particular, they define the “survival 
time of a summary” as the time until the current 
database summary is sufficiently different from 
the old one. To predict this survival time, they 
consider (a) a measure of difference between sum-
maries at adjacent time points and (b) a probability 
distribution that is expected to be followed by the 
content summary change. The measures or “con-
tent summary change indicators” they use to this 
purpose are the Kullback-Leibler divergence, that 
is, the difference in the word distribution between 
the old and the current summary, and the simpler 
“precision” (defined as the number of words in the 
current summary that were also in the old one) 
and “recall” (defined as the number of words in 
the old summary that are also in the current one). 
The probability with which a content summary 
change may occur within time t is assumed to fol-
low an exponential distribution S(t)=e-λt, in which 
the value of λ should be predicted for a specific 
database. In their experiments with text collections 
from the Internet domains GOV, EDU and COM, 
Ipeirotis et al. (2005) assessed differences in the 
speed of change: The GOV collection changes 
more slowly than the others, while COM and 
other commercial site collections change faster 
than the rest. Moreover, large databases tend to 
change faster than small ones.

Ipeirotis et al. (2005) consider content summa-
ries over whole databases of documents. Aggarwal 
and Yu (2006) rather derive content summaries 
for clusters over accumulating streams. They 
introduce the notion of “droplet” as a statistical 
summary of data that is stored and inspected 
at regular intervals (Aggarwal & Yu, 2006). In 
particular, a droplet consists of two vectors, one 
accommodating co-occurring pairs of words and 
one accommodating the words occurring in the 
cluster and their weights. The members of a cluster 
are weighted and contribute to the cluster’s weight. 
This weight is part of the droplet and subject to 
a decaying function: A cluster’s weight decays if 
no new points are added to it.

Aggarwal and Yu (2006) achieve the identifica-
tion of new clusters by juxtaposing cluster droplets 
and new data: A new document is assigned to the 
cluster whose droplet has the highest similarity to 
it, according to some similarity/distance function. 
A cluster becomes “inactive,” if no documents 
are added to it for some time. If a document 
cannot be assigned to a cluster, then it becomes 
a new cluster itself—replacing the oldest inactive 
cluster. Hence, new data form new clusters while 
old clusters decay gradually, if they are not fed 
with new documents. This approach conforms to 
the intuition behind topic detection and tracking 
in the conventional TDT sense: A new topic is a 
document that does not fit to any existing topic; a 
topic decays and disappears if no new documents 
are inserted to it any more.

Monitoring changes in cluster 
labels

In the method of Aggarwal and Yu (2006), the 
cluster summary is not associated with semantics: 
A droplet is a condensed cluster representation 
appropriate for matching and maintenance but 
not necessarily for human inspection and inter-
pretation. Methods on the monitoring of cluster 
labels are rather assuming that a label is a hu-
man-understandable representation of a cluster’s 
content. Accordingly, they focus on the evolution 
of semantics captured in the cluster’s label.

In the topic evolution mechanism of Moringa 
and Yamanichi, a topic consists of the words with 
the largest information gain (Moringa & Yaman-
ichi, 2004). The topics reflect the contents of soft 
clusters, built with an incremental Expectation-
Maximization algorithm. Finite mixture models 
are learned at each timestamp and dynamic model 
selection is performed to choose the optimal one. 
The key idea of this model selection is to first build 
a large number of components and then select the 
main ones on the basis of Rissanen’s predictive 
stochastic complexity. The emphasis of that work 
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is on the adaptation of the topics rather than the 
tracing of topic changes.

Mei and Zhai studied the tracing and inter-
pretation of topic change (2005). Similarly to 
Moringa and Yamanichi (2004), they consider 
mixture models to build document clusters and 
also use the Expectation-Maximization algorithm. 
A document may belong to multiple clusters and, 
consequently, topics describing different clusters 
may overlap. To derive the topics themselves (as 
combinations of words describing a cluster), they 
assume a background model. Then, the evolution 
of topics is traced using Kullback-Leibler diver-
gence, similarly to Ipeirotis et al. (2005). Mei and 
Zhai (2005) introduce topic transition types and 
build a topic evolution graph, in which transi-
tions are traced using Hidden-Markov-Models. A 
remarkable aspect of the topic evolution graph is 
that edges/transitions are not restricted to topics 
derived at consecutive periods: A topic is con-
nected to any topic discovered at an earlier period, 
if the former turns to be a transition of the latter 
(according to the KL-divergence).

The clustering of text streams is also consid-
ered by Shi Zhong (2005), albeit the emphasis 
is on adapting clusters rather than detecting 
changes in their labels. Shi Zhong proposes an 
online variation of k-means, the “online spherical 
k-means”: documents are modeled as TFxIDF 
vectors normalized into unit length, where-
upon the clustering algorithm builds k clusters, 
maximizing the average cosine similarity within 
each cluster. A new document is assigned to the 
cluster with the closest centroid, whereupon the 
cluster itself is adjusted (Zhong, 2005). Cluster 
labels are not derived nor used by the algorithm 
itself; they are only used for the evaluation upon 
prelabeled experimental data. Algorithms that 
perform document clustering but do not derive 
topics from the clusters nor consider topic change 
are not considered further in this chapter.

Among all methods described thus far, the 
approach of Mei and Zhai (2005) is the closest to 
our task of topic monitoring for the extension of 

a class taxonomy: Similarly to Mei and Zhai, we 
are interested in identifying emerging topics that 
persist over a number of time periods. Moreover, 
a document may also refer to more than one topic, 
so that soft clustering seems appropriate at first. 
However, soft clustering does not agree with 
our ultimate objective of extending an original 
classification of topics with new, emerging and 
long-lived topics, since classes may not overlap.1 
Furthermore, a stream of noisy documents does 
not lend itself to a time-independent background 
model, as is assumed in Mei and Zhai (2005). 

In our earlier work (Schult & Spiliopoulou, 
2006a; Schult & Spiliopoulou, 2006b), we have 
studied the evolution of topic labels with the ob-
jective of tracing emerging and declining topics. 
One of the focal points was the study of changes 
in the feature space, whereupon cluster quality 
degradation has been used as an indicator of a 
shift in the feature space. We used an evolving 
document collection for our experiments, the ACM 
Digital Library section 2.8. We have observed 
the increasing domination of some topics (most 
prominently: “data mining”) and the gradual 
disappearance of others. In these experiments, 
the documents were very small, consisting only 
of the titles and keywords of the library papers. 
However, differently from our premises here, 
the library papers contain very little noise and 
the vocabulary is limited, thus allowing for a 
reasonable feature space comprised of the most 
frequent words. A collection of repair reports or 
of customer complaints and reclamations has a 
much wider vocabulary and is expected to contain 
many typographical errors. In this chapter, we 
consider therefore all words of the collection as 
members of the feature space.

To capture the interplay of cluster evolution and 
topic evolution, we have also investigated meth-
ods on modeling and detecting cluster changes 
in general, as described in the dedicated section 
on “Monitoring Cluster Evolution.”
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remembering and forgetting in a 
stream of documents

When building and adjusting clusters across an ac-
cumulating stream of documents, already known 
documents may have a negative influence on the 
detection of emerging topics and the tracking of 
changes in existing topics: In the first case, a group 
of documents that corresponds to an obsolete topic 
may attract documents that are only marginally 
relevant to it and that would otherwise form a 
new topic. In the second case, incoming docu-
ments may indicate an evolution inside a topic, 
for example, the increasing dominance of some 
terms; if already known documents dominate, 
this evolution will not become apparent.

The motivation behind forgetting known 
documents is that they should not be weighted 
equally to new ones. Methods to this end come 
from TDT but also from incremental clustering 
and from adaptive classification, ranging from 
conventional sliding window approaches as in 
(Mei & Zhai, 2005; Schult & Spiliopoulou, 2006a, 
2006b) to reweighting schemes for data records, 
as in Aggarwal and Yu (2006), Moringa and Ya-
manichi (2004), Nasraoui, Cardona-Uribe, and 
Rojas-Coronel (2003), and Zhong (2005).

Shi Zhong  (2005) proposes an exponential 
decay rate for old records: A new record is assigned 
a weight of 1. Then, for each time segment, the 
record’s contribution to “its” cluster is recomputed 
using a decay factor γ∈(0,1). Gradual decay is 
also proposed by Aggarwal and Yu (2006) who 
associate each data record with a weight generated 
by a nonmonotonic “fading function” that decays 
uniformly with time: The decay of records leads 
to a change of the droplets (the cluster content 
summaries), so that droplets can die out, shift 
conceptually or merge with other droplets.

Nasraoui et al. (2003) also use a decaying func-
tion for the weighting of old records. However, they 
consider the case of a record’s reappearance. While 
other studies consider this case as the insertion 
of a new record and assign to it a weight for new 

records, Nasraoui et al. (2003) rather increase the 
weight of the old record that reappeared.

MonItorInG cluster 
evolutIon

The detection of emerging and persistent top-
ics can be observed as a special case of cluster 
evolution. This is a rather new research subject 
that gained in importance in recent years. The 
scientific contributions come from the fields of 
pattern comparison and spatiotemporal cluster-
ing. There are also some dedicated studies on the 
understanding of cluster change (for instance 
Aggarwal, 2005).

Frameworks for the Identification of 
changes

Between 1999 and 2000, Ganti et al. proposed 
three modules for the observation and analysis 
of changes in datasets, FOCUS (Ganti, Gehrke, 
& Ramakrishnan, 1999a), CACTUS (Ganti, 
Gehrke, & Ramakrishnan, 1999b) and DEMON 
(Ganti, Gehrke & Ramakrishnan, 2000). When 
observed as three components of one framework, 
these modules can be used to detect and monitor 
evolution in datasets or clusters over them, as well 
as to derive and monitor summary descriptions 
over the data.

Ganti et al. (2000) proposed DEMON for data 
evolution and monitoring across the temporal 
dimension. DEMON detects systematic vs. non-
systematic changes in the data and identifies the 
data blocks (along the time dimension) which have 
to be processed by the miner in order to extract 
new patterns. In the context of topic evolution, 
DEMON delivers a mechanism for the selection 
of those documents that should be considered for 
the discovery of new clusters. Hence, DEMON 
can be observed as a mechanism that specifies the 
data to be forgotten and those to be remembered 
at each point of time.



���  

Topic and Cluster Evolution Over Noisy Document Streams

The module FOCUS of Ganti et al. (1999a) 
compares two datasets and computes an interpret-
able quantifiable deviation between them. This 
deviation is represented as a “model” consist-
ing of a “structure component” and a “measure 
component.” The structure component identifies 
“interesting regions” and the measure component 
summarizes the subset of the data that is mapped 
to each region. Clustered datasets are a special 
case: Clusters are nonoverlapping regions, where 
each region is described through a set of attributes 
(structure component) and corresponds to a set 
of raw data (measure component). This elaborate 
and powerful mechanism can split the clusters 
under comparison down to identical regions and 
thus provide an overview of their differences. As 
described later, our approach for the discovery 
and the monitoring of topics is based on a vari-
ation of FOCUS.

The “pattern monitor” (PAM) (Baron, Spili-
opoulou, & Günther, 2003) models patterns as 
temporal, evolving objects. A model of changes is 
more recently proposed in Baron and Spiliopou-
lou (2005). The main emphasis of PAM is on the 
monitoring of association rules with a more recent 
extension for clusters. However, topic monitoring 
is beyond its scope.

The PANDA framework (Bartolini, Ciaccia, 
Ntoutsi, Patella, & Theodoridis, 2004) delivers 
mechanisms for the comparison of simple pat-
terns and aggregation logics for the comparison 
of complex ones. In this framework, a simple 
pattern is built upon raw data, while a complex 
pattern consists of other patterns, for example, 
a cluster of association rules. Hence, the com-
parison of complex patterns and the subsequent 
computation of the dissimilarity score between 
them is performed in a bottom-up fashion: A 
complex pattern is decomposed in component 
patterns which are compared to each other; then, 
the dissimilarity scores are combined according 
to a user-defined aggregation logic. In terms of 
expressiveness, PANDA subsumes FOCUS, as 
explained in Bartolini et al. (2004). However, 

for the purposes of our approach, the expressive 
power of FOCUS is sufficient.

Closest to our work is the recently published 
framework MONIC for the monitoring of cluster 
evolution (Spiliopoulou, Ntoutsi, Theodoridis, 
& Schult, 2006): MONIC encompasses a model 
for “cluster transitions”, such as a cluster being 
split or absorbed by another or changing in size 
or homogeneity. Its notion of “overlap” among 
clusters captured at different time points allows 
for changes in the feature space, thus becoming 
appropriate for the task of topic evolution over a 
stream of documents. Indeed, MONIC has been 
tested on an evolving document collection, the 
ACM Digital Library section H2.8. MONIC is 
appropriate for the detection of emerging topics, 
but it has not been designed for interaction with the 
human expert: It lacks a visualization method that 
intuitively captures topic evolution and assists the 
human expert in following traces of topic splits 
and merges. Especially for collections of noisy 
documents, such assistance seems indispensable, 
so it is part of our approach presented later.

spatiotemporal clustering for 
cluster evolution

Generic methods for cluster evolution have 
been published under the labels “incremental 
clustering” and, more recently, “spatiotemporal 
clustering.” The latter methods usually assume 
the existence of a stationary trajectory with an 
associated metric.2

Ester, Kriegel, Sander, Wimmer, and Xu (1998) 
proposed an early work on the detection of cluster 
change and the adjustment of spatial clusters. Ester 
et al. (1998) used the term “incremental cluster-
ing” for a method that re-computes the clusters 
after each update of the dataset, paying emphasis 
on the minimization of the computation overhead. 
They proposed IncrementalDBSCAN, an adaptive 
variant of the static DBSCAN proposed earlier 
by the same group.
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DBSCAN is a single scan clustering algorithm 
that groups neighbouring objects into clusters us-
ing a local clustering condition. The condition is 
that each object in a cluster must have a minimum 
number of neighbours, whereby a neighbourhood 
is an area (in the topological sense) with a prede-
fined radius. DBSCAN stands for “Density-Based 
Clustering of Applications with Noise” and pays 
particular emphasis in preventing cluster distor-
tion through noise/outliers.

IncrementalDBSCAN focuses on cluster 
adjustment. Nonetheless, the authors propose 
a typification of cluster changes (Ester et al., 
1998): When a new object is inserted, this may 
cause the creation of a new cluster (a formerly 
small neighbourhood becomes adequately large), 
cluster absorption (an existing cluster absorbs 
the new object and its neighbours) and cluster 
merger (the members of different clusters be-
come density-connected). When an object is 
deleted, a cluster may shrink or even disappear 
(some of its members become disconnected) or 
be split (the fragments of the original cluster are 
disconnected but are adequately large to become 
clusters themselves).

Since noise is a primary characteristic of the 
documents we consider, methods that are robust 
against noise are of particular interest. However, 
DBSCAN has been designed for application areas 
where proximity of data records is independent of 
the temporal dimension, i.e. the distance between 
two data records cannot change from one time 
point to the next. This holds for spatial databases, 
including geographical information systems (GIS). 
Distance among documents might be defined in a 
similar way, for example, using Euclidean distance 
or (more usually) cosine distance. However, the 
feature space across a document stream is not 
constant, since some terms become obsolete while 
others emerge. Hence, IncrementalDBSCAN is 
not trivially applicable.

Aggarwal (2005) proposed a very elaborate 
method for cluster evolution. In his approach, a 

cluster is a densification of the topological space 
and is described by a kernel function. The empha-
sis of Aggarwal (2005) is on studying the velocity 
of change in an evolving cluster and on identifying 
(a) the dimensions of the feature space, which are 
most responsible for change and (b) areas or data 
points that exhibit the highest velocity of change. 
In the context of topic evolution, this method can 
be used to identify areas that evolve at different 
speeds and associate sets of words (labels) with 
them. However, the constraint of a static, a pri-
ori known feature space applies for this method 
similarly to IncrementalDBSCAN.

For Neill, Moore, Sabhnani, and Daniel (2005) 
and for Yang, Parthasarathy, and Mehta, (2005), 
clusters are geometric objects that move or change 
shape in a metric space. Neill et al. (2005) study 
the emergence and stability of clusters, observing 
spatial regions across the time axis. However, their 
notion of “cluster” is very particular: A cluster 
is a region where counts (for some property) are 
higher than expected. This notion cannot be used 
for topic evolution, because a document cluster is 
rather a region of objects that are more similar to 
each other than to the rest of their neighbourhood 
(cf. cluster definition against a baseline (Mei & 
Zhai, 2005)).

Yang et al. (2005) detect change events upon 
clusters of scientific data. They study “Spatial 
Object Association Patterns” (SOAPs), which are 
graphs of different types, for example, cliques or 
stars. A SOAP is characterized by the number 
of snapshots in the data, where it occurs and the 
number of instances in a snapshot that adhere to 
it. With this information, the algorithm detects 
formation and dissipation events, as well as clus-
ter continuation. The types of cluster evolution 
are also relevant for topic evolution, but the 
methodology itself does not transfer, because it 
requires the establishment of links among the 
objects under observation.
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A toPIc evolutIon Method 
for A streAM of noIsy 
docuMents

After discussing the literature advances on evolv-
ing topics and on evolving clusters, we now intro-
duce our approach for the discovery of topics that 
should serve as potential new classes over a stream 
of documents. Our problem specification, which 
is motivated by the application of workshop nar-
ratives in the automotive industry is characterized 
by very small and noisy documents that contain 
jargon terms, typographical and linguistic errors 
next to an abundance of potentially synonymous 
terms. To deal with a stream of those characteris-
tics, we propose a method that (a) discovers clusters 
at consecutive periods, (b) compares clusters of 
consecutive clusterings and links each old cluster 
to its match in the new clustering, if any and (c) 
graphically depicts chains of matched clusters 
over time, identifying cluster splits and merges. 
To this end, we have designed a variation of the 
FOCUS+DEMON framework (Ganti et al., 1999a; 
Ganti et al., 2000), adapted to the demands of 
stream monitoring over an evolving feature space. 
Our method is semi-automatic in the sense that 
the final decision on adding a topic to the existing 
classification scheme is left to the human expert. 
A graphical user interface has been designed to 
support this task by presenting evolving clusters 
and the associations among them.

Application case: Workshop 
narratives in the Automotive 
Industry

In our application case, we study repair & mainte-
nance reports about vehicles that have been newly 
introduced to the market. The fast and thorough 
treatment of repair & maintenance requests for 
new vehicles is paramount for customer satisfac-
tion – and so is the recording of all requests and 
remarks made by the customers. The documents 
created to this purpose, termed as “workshop 

narratives” hereafter, are short texts, written 
down by the personnel at the front desk of the 
vendor-affiliated workshops, where the repairs 
take place. The engineers use these documents 
to perform the requested maintenance procedures 
or detect malfunctions.

Workshop narratives contain information that 
can help answer questions like: What are the expe-
riences of the customers with the vehicles? Which 
problems do they encounter? If malfunctions are 
encountered, how do they manifest themselves? 
Here are two major application areas that demand 
answers to such questions: 

• Early	field	feedback:	When a new vehicle 
is introduced to the market, many function-
alities and many pieces of technology are 
put to test at once. Emerging topics in the 
narratives can deliver a first picture on how 
the new vehicle is received by the customers 
and what additional expectations they have 
for it. 

• Fast response to shortcomings: The early 
identification of and the responses to short-
comings or malfunctions in new vehicles 
are of paramount importance for the qual-
ity management and for the image of the 
automotive vendor. 

Those two application areas contribute to quality 
assessment and to customer satisfaction in the 
CRM context, as stressed in the introduction to 
this chapter. The identification and monitoring of 
emerging topics is useful for further applications, 
such as the long-term follow-up of vehicle types 
in the market and the identification of component-
specific requests for repair or maintenance. In the 
following, we focus on the first two areas.

description and Preparation of the 
document stream

Our approach is designed for a stream of small 
noisy documents. Workshop narratives, reclama-
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tions and customer letters are good examples of 
this type of documents, which are characterized 
by the following properties:

• The documents are small, sometimes limited 
to a couple of sentences. In our application, 
a document contains between one (!) and 
150 words. 

• The documents are written in jargon, con-
taining application-specific abbreviations 
and encodings. 

• There is no agreed-upon terminology, since 
the authors are independent of each other 
(e.g., customers of a company or engineers 
at different workshops). In our application, 
we counted one million narratives contain-
ing more than 150 synonym terms for the 
concept “maintenance.”

• The feature space, comprised of the words 
in the documents, is not static, since some 
words, notably product-specific abbrevia-
tions, disappear while others emerge. 

• There are misspellings and slang expres-
sions, the sentences are not always syntac-
tically complete (e.g., verbs or subjects are 
missing). This is because such documents 
are not intended for public use but for the 
treatment of a particular case. 

In the preprocessing phase, we assume that the data 
arrive (or rather: are collected) in fixed intervals. 
Our text preparation for the documents collected 
within each interval includes text normalization, 
identification of synonyms with help of an existing 
synonym-list, stop word elimination and deletion 
of words that appear less than twice in the period 
under observation.

A conventional vectorization according to the 
vector-space-model introduced by Salton, Wong, 
and Yang (1975) produced very sparse vectors. 
Stemming, lemmatization and singular-value-de-
composition (SVD) did not result in an applicable 
dimensionality reduction, most likely because 
of the many jargon words, abbreviations and the 

many types of misspelling. Therefore, we have 
modeled each document by a pair of vectors, one 
vector of words and one vector of “quadgrams,” 
that is, 4-grams of letters, built by extracting 
overlapping 4-letter sequences. The quadgram 
vector is more robust against orthographical and 
grammatical errors than the vector of words. The 
quadgram representation and the n-gram repre-
sentations in general are language-independent, 
do not demand linguistic preprocessing and have 
a rather small vocabulary size. For example, a 
vocabulary consisting of 25 letters will result 
in at most of 254 different quadgrams. Hence, 
quadgram vectors form a less sparse data space 
than vectors of words. 

For both the word-vector and the quadgram-
vector, we associated each vector element with 
its TFxIDF value:
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where tf (d, t) is the term frequency TF for term 
t in the document d of the collection D, |D| is 
the cardinality of D and df(t) is the document 
frequency of term t in D. We further normalize 
this value into:
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Each document is thus represented by a pair of 
vectors of normalized TFxIDF values. Then, the 
similarity of two documents d, d’ with respect to 
their word-vectors X and X’ is the complement of 
their cosinus distance: simw(d,d’):= simw(X,X’)=1-
cos(X,X’). The similarity of the two documents 
with respect to their quadgram-vectors is defined 
similarly as: simq(d,d’):= simq(Y,Y’)=1-cos(Y,Y’), 
where Y, Y’ denote the quadgram-vectors of the two 
documents. In the next subsection, we use these 
two notions of similarity to define the similarity 
between clusters.
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topic discovery

We perform the topic discovery step at each period. 
We use an agglomerative hierarchical clustering 
method, because such methods do not require 
that we define the number of clusters a priori. 
The hierarchical clustering algorithm operates 
bottom-up, starting with individual documents 
as one-element-clusters/nodes and merging the 
two most similar nodes iteratively, until only one 
node remains; this is the root of the “dendrogram” 
or “cluster tree”.

To calculate the similarity of two nodes during 
clustering, we first compute the Average Neighbor 
(Group Average) similarity between word-vectors, 
resp. quadgram-vectors. In particular, let C,C’ be 
two clusters. Let X, X’ denote the word-vectors 
in C, resp. C’ and let Y, Y’ denote the quadgram-
vectors in C, resp. C’. Then, the word-based group 
average similarity of C, C’ is defined as:
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and similarly for the quadgram-based group 
average similarity:
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where simw(X,X’) denotes the similarity between 
two word-vectors and simq(Y,Y’) the similarity 
between two quadgram-vectors, defined in both 
cases as the complement of their cosine distance. 
We then combine the two types of cluster similar-
ity into the final cluster similarity score:
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where nw and nq are optional weighting factors 
indicating the degree of influence of each vector 
type.

We use this definition of cluster similarity to 
build and “prune” the dendrogram. Pruning is 
performed by traversing the completed dendro-
gram and selecting each cluster C that satisfies 
both of the following properties: (a) Its children 
are more similar to each other than a threshold 
t-MinSimilarity and (b) its cardinality is no less 
than a threshold t-MinClusterSize. This means 
that we select only clusters of high homogeneity 
that correspond to a nontrivial part of the docu-
ment collection.

It is apparent that this cluster selection/prun-
ing mechanism does not guarantee that the whole 
collection is covered: We ignore those subsets 
of the collection that cannot be described by a 
cluster of acceptable quality and size. This is 
in accordance with our objective: We are not 
interested in a clustering that best describes the 
whole collection, but rather in discovering emerg-
ing topics that may serve as document classes 
over part of the collection. For such topics, we 
consider only the labels of clusters that satisfy 
the two requirements. 

topic evolution Monitoring

We trace and monitor topic evolution by a 
noisy-stream-robust variation of the framework 
FOCUS+DEMON (Ganti et al., 1999a; Ganti et al., 
2000). The reader may recall that the objective of 
that framework was to compare data (or derived 
patterns) and test whether they come from the same 
population: FOCUS has a structure component 
that identifies interesting regions and a measure 
component that defines relations between elements 
and regions. DEMON delivers summaries over 
the data or the patterns under comparison.

In principle, we might use the original 
framework for the comparison of clusterings 
derived at consecutive time periods, except that 
we are not interested in identifying deviations 
but rather in tracing topics. However, FOCUS 
has not been designed for feature spaces with 
thousands of dimensions; a scalable variation is 
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needed. Moreover, the summaries delivered by 
DEMON assume a fixed feature space, while in 
our problem specification the feature space may 
change from one period to the next. Hence, we 
derive an appropriate variant of that framework, 
as described hereafter.

Following the notation of Ganti et al. (1999a) for 
FOCUS, we denote the clustering derived at some 
time period t as model m. As we explained in the 
last section, m consists of the clusters satisfying 
a quality constraint (intra-cluster similarity is at 
least t-MinSimilarity) and a cardinality constraint 
(cluster size is at least t-MinClusterSize). At 
each period t, we compare the model/clustering 
m with the clustering m’ derived at the previous 
period t’. The feature spaces of these two peri-
ods are not necessarily identical – a fact that is 
not addressed in DEMON (Ganti et al., 2000). 

On the other hand, since the document stream 
accummulates, there is a data overlap between t 
and t’, consisting of the data records seen until 
t and not being “forgotten.”3 Hence, instead of 
computing the “greatest common refinement” 
between m and m’, as in Ganti et al. (1999a), we 
observe the clusters in each model/clustering as 
sets of data records and compare the models on 
the basis of the dataset overlap. This gives us 
also more scalability towards high-dimensional 
feature spaces.

To compare clusters in set theoretical terms, we 
first define a sliding window Θ upon the time axis: 
For each time period t, it determines the number 
of subsequent periods, during which the records 
inserted at t are still remembered. Then, for any 
two adjacent periods t’ and t (t’<t), we compare 
their models m’ and m on the basis of the records 

step Action

Input:
- Set of models M={m1,…,mk}, where mi is the model derived at ti.
- Size of sliding window Θ
- Threshold on the ratio of old documents inside a cluster τ-old

output: directed graph G of connected clusters, as a set of weighted edges

� G	=	{};

� foreach i=1,…,k do

�   m := model derived at ti	;	m’	:=	model derived at ti-1	;

�   foreach cluster C in m do

�     X:=Y:= set of docs in C that arrived in [ti--Θ,ti-1); // “old” documents

�     foreach cluster C’ in m’ do  

�      f = C' ∩ X /Y; g =  C' ∩ X / C ;  

�        if f >= τ-old then       

�         X = X – (C'	∩	X)	G	=	G	∪ {t, ((C', C,) g)}, 

�0       else break; 

��       endif 

��     end-foreach

��   end-foreach       

�� end-foreach    

Algorithm 1. Algorithm for cluster comparison and matching
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in m’ that are still remembered and thus appear in 
m. We stress that these records are not only those 
inserted at t’ but also older records that are still 
remembered in both t’ and t. This FOCUS-variant 
for cluster comparison and matching is depicted 
in algorithm 1 and described in the following.

The algorithm takes as input the set of models 
derived at the k periods of observation t1,…,tk, the 
size of the sliding window Θ and a lower bound-
ary t-old on the ratio of old documents that may 
be common to a cluster in time period ti and a 
cluster of the immediate previous period ti-1. In this 
context, “old” documents are those encountered 
from period ti -Θ until period ti-1. For each time 
period ti, these documents constitute set X (cf. 
line 5 of algorithm 1). The initial size of this set 
depends on the size of the sliding window; if Θ is 
set to 1, then only the documents inserted during 
ti-1 belong to X , since ti -Θ = ti -1=ti-1.

The output of algorithm 1 is a directed graph 
G, the nodes of which are clusters found at dif-
ferent periods. An edge emanates from a cluster 
C-old at period ti-1 and points to a cluster C-new 
at period ti ; its existence indicates that C-old has 
“survived into” C-new, in the sense that the two 
clusters overlap for at least t-old records. This 
corresponds to the notion of “cluster survival” 
indicated by set overlap, as described in our cluster 
monitoring MONIC (Spiliopoulou et al., 2006).

To compute graph G, algorithm 1 processes 
each cluster C of the model m derived at period 
ti in turn (line 4). It compares it with the clusters 
of model m’ derived at the previous period (line 
5), by taking records of X and finding clusters in 
m’ that intersect with them. Such an intersecting 
cluster C’ is a candidate as source node for a graph 
edge pointing to C, if the overlap between C’ and 
X exceeds the threshold t-old (line 9). To this pur-
pose, we define two functions that return normal-
ized overlap values. Function overlapT(C,C’,Θ) 
(“overlap towards target”) returns the intersection 
of C and C’ subject to the common documents for 
the periods in the sliding window Θ, normalized 
to the size of the target cluster C.

'
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Similarly, overlapS(C,C’,Θ) (“overlap towards 
source”) returns the intersection of C and C’ 
subject to the common documents for the periods 
in the sliding window Θ, normalized to the size 
of the source cluster C’.
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In algorithm 1, line 7, we compute dynamic vari-
ants of these functions: In each iteration over 
model m’, the set of shared records X is reduced 
by removing the records belonging to a cluster 
selected as satisfactory candidate and thus con-
tributing an edge to the graph (cf. line 9). The 
dynamic variant of overlapS() is function f that 
computes the overlap between C’ and X (rather 
than C) and normalizes it to the original size 
of the set of common records |Y| (line 7). The 
dynamic counterpart of overlapT() is function 
g that normalizes the same overlap over C (line 
7). The value returned by f in each iteration is 
compared to the threshold t-old. If the threshold 
is satisfied, the edge from C’ to C is added to the 
graph, enhanced with a weight equal to the value 
of g (line 9). A time period is also associated with 
each inserted edge; it is the period, in which the 
target cluster has been built (line 9).

By each successful test, X shrinks so that it 
gradually becomes empty or so small that the test 
for f fails (line 8). Then, the iterations over m’ for 
cluster C stop and the next cluster of m is studied, 
until all clusters of m are considered.

It is apparent that Algorithm 1 is sensitive to 
the order of processing the clusters in each model 
(lines 4 and 6). Different orderings are feasible 
here, for example, on size (largest clusters first) or 
homogeneity (more homogeneous clusters first). 
The sliding window Θ also affects the results: 
Large windows result in big sets of old documents 
and thus increase the influence of past documents 
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upon current clusters and their topics. Small 
windows reduce this effect, and, consequently, 
also the likelihood of cluster survival.

In Table 1 we show and compare example clus-
terings over three adjacent time periods, setting 
the size of the sliding window to Θ=2. At each 
period t “new docs” refers to the records/docu-
ments inserted at that period, while “all docs” 
refers to all documents taken into account at that 
period. The latter are new docs, inserted at this 
period, and those among the documents inserted 
earlier, which are still within the sliding window. 
For simplicity of notation, we use consecutive id-
numbers for the clusters at adjacent periods, that 
is, m1={C1,C2}, m2={C4,C5,C6} and m3={C6,C7}. In 
the upper part of the table, we see the contents of 
each example cluster. In the lower part of the table, 
we observe the influence of C1 upon C5 during the 
second time period (retrospective monitoring for 
C5) and the influence of C5 upon the clusters of the 
next period (prospective monitoring for C5).

visualization of linked clusters

For a set of adjacent time periods {t1,…,tk} and for 
any pair of adjacent periods t’, t in it (t’<t), our 

algorithm “links” each cluster of model m in t to 
those clusters of model m’ of t’ that have survived 
to it. This allows us to visualize the graph G 
built by Algorihm 1. We label each node/cluster 
in the graph with the most frequent words in the 
word-vectors it contains. This label is a “topic,” 
encountered at the period where the cluster has 
been discovered. We further label each link with 
the words shared between the labels of the clusters 
it connects; this is the “subtopic” that survived 
from the old to the new time period. In Figure 
1, we show a part of the graphical user interface 
we have designed to assist the human expert in 
inspecting the links among the clusters and study-
ing the evolving topics represented by them.

The y-axis of Figure 1 depicts the consecu-
tive periods under observation, starting from the 
earliest period at the bottom of the figure. In the 
main area of the visualization, we see the linked 
clusters. The width of a link reflects the value of 
g for the two linked clusters: the bigger the influ-
ence of old documents upon the current cluster, 
the wider is the link. When the user moves the 
mouse over the box representing a cluster, the box 
is highlighted and further information appears, 
including the cluster label and the value of the 

period new docs all docs Clusters

t1 A,B,C,D,E,F,G,H A,B,C,D,E,F,G,H C1={A,B,C,D,E}
C2={F,G,H}

 t2 I,J,K,L,M,N,O,P I,J,K,L,M,N,O,P
+ A,B,C,D,E,F,G,H

C3={A,I,J,K}
C4={E,F, G, H}
C5={B,C,D,L,M,N,O,P}

 t3 Q,R,S,T,U,V,W Q,R,S,T,U,V,W
+ I,J,K,L,M,N,O,P

C6={K,L,O,P,Q,R,T,V,W}
C7={I,J,M,N,S,U}

period cluster intersections results (t-old = 0.2)

 t2 vs t1 C1 ∩ C5 = {B, C, D}
C2 ∩ C5 {}

 f(C1,C5)=1.0, g(C1,C5)=0.375

 f(C2,C5)=0, g(C2,C5)=0 

 t3 vs t2 C5 ∩ C6 = {L, O, P} 
C5 ∩ C7 = {M, N} 

 f(C5,C6)=0.75, g(C5,C6)=0.33

 f(C5,C7)=0.5, g(C5,C7)=0.33

Table 1. An example of cluster monitoring
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dynamic variant f of the function overlapT(). In 
Figure 1, we see a merge of two clusters in the 
second period of observation, that is, two clusters 
surviving in a single new one, as well as a cluster 
split in the last period. 

experimental evaluation

We have performed a first set of experiments, 
in which we applied our method to a stream of 
vehicle workshop narratives, composed of 20 
time periods with 15,000 to 80,000 narratives 
per period. The goal of these experiments was 
not the identification of new, emerging classes 
but rather to understand the method’s behaviour 
and the influence of different parameters, like the 
sliding window size Θ.

We illustrate our results in the figures below. 
Each figure is partitioned in four charts, where the 
x-axis always represents the timeline of 20 periods. 
The chart in the upper left segment (ULS) shows 
the percentage of topics that survived for 2 to 20 
periods: These are topics that appear both in the 

source and the target node of at least one link in 
the graph G found by Algorithm 1. We call them 
“traceable topics;” the clusters containing them 
are “traceable clusters.” The chart in the upper 
right segment (URS) shows the average cluster 
size. The chart in the bottom left segment (BLS) 
shows the average value of f, where the average 
is computed upon the clusters of each period. The 
chart in the bottom right segment (BRS) depicts 
the average value of g, computed in a similar way. 
Similarly to the values of f and g, those averages 
range in [0,1]; in BLC and BRC, we depict them 
as percentages.

In Figure 2, we study cluster evolution for 
a cluster size threshold t-MinClusterSize=30, a 
sliding window size Θ=3 and an overlap threshold 
t-old=0.2. We vary t-MinSimilarity, the similar-
ity threshold among the children of a cluster in 
the dendrogram, assigning values within the 
range [0.2,0.5]4 and thus influencing the number 
of clusters considered by algorithm 1 at each 
period. In segment ULS of Figure 2, we observe 
a fluctuation in the number of traceable clusters; 

Figure 1. Sample application: Graphical representation of evolving topics
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it is most likely due to the different numbers of 
documents/narratives arriving at each period and 
thus influencing the size of the clusters and the 
impact of old documents. In URS we can see that 
an increase in the similarity threshold results in 
a slight decrease of cluster size. A possible ex-
planation is that a high threshold value results in 
fewer matches, for which only small and compact 
clusters qualify. In BLS and BRS, the curves for 
f and g evolve similarly across the time axis and 
are influenced by threshold changes in much the 
same way. The two curves have sharp negative 
peaks at the same periods as for the traceable 
clusters (ULS), but the asymmetry with respect 
to the effects of this threshold upon the number 
of traceable clusters is remarkable.

Figure 3 is the counterpart of Figure 2 for 
cluster size threshold t-MinClusterSize=50. The 
curves for the traceable clusters, average f and 
average g are similar. The average cluster size 

has increased by ca. 20%. This is expected, since 
this threshold determines the cut-off locations 
at the dendrogram produced by the hierarchical 
clustering algorithm.

In Figure 4, we keep the value of the similar-
ity threshold constant, t-MinSimilarity=0.3, set 
the minimum cluster size to 50 and vary the size 
of the sliding window Θ from 1 to 7 periods. 
The number of traceable clusters (ULS) does 
not seem to be affected by the window size. As 
Θ increases, the average values of f and g also 
increase slightly, since large values of Θ corre-
spond to a higher impact of the old documents. 
This may also explain why the curves on average 
cluster size move closer to one another. 

Figure 2. Experimental results with minimum cluster size set to 30 documents
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Figure 4. Experimental results for different sizes of the sliding window

Figure 3. Experimental results with minimum cluster size set to 50 documents
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conclusIon

We have discussed the issue of topic evolution in a 
document stream, by first elaborating on literature 
advances and then presenting a new method that 
puts emphasis on small, noisy documents.

Relevant literature on topic evolution in a 
document stream has been initiated in the do-
main of “topic detection and tracking” but has 
concentrated on the discovery of thematic subjects 
rather than TDT stories and on the evolution of 
these themes as the underlying clusters evolve. 
The proposed algorithms are powerful but focus 
mainly on non-noisy documents; moreover, they 
do not allow for changes in the feature space. 
Methods for cluster evolution and for the detec-
tion of cluster changes may also be used for topic 
evolution monitoring. However, as with topic 
evolution, many methods of this group assume 
a trajectory over a static feature space. Generic 
frameworks for cluster change detection are 
more appropriate in this context, although they 
have not been a priori designed for monitoring 
over a stream.

Our topic evolution method is motivated by 
the need to identify potential classes in a stream 
of small noisy documents. This demand appears in 
areas like environmental monitoring where busi-
ness news must be digested or filtered, in quality 
assessment where repair & maintenance reports 
must be studied for the discovery of emerging 
types of malfunction, in customer relationship 
management where customer reclamations, 
suggestions or complaints must be processed to 
understand customer expectations and to increase 
customer satisfaction. In those application areas, 
the documents constituting the stream vary in 
size, terminology5, presence of slang or jargon 
terms and in grammatical/syntactic quality. To 
deal with such data, we have extended a generic 
framework for cluster change detection by a 
document model that describes a text with two 
complementary vectors. We have used a set-
theoretic notion of overlap between old and new 

clusters instead of assuming a static trajectory. 
We have further enriched the framework by a 
visualization tool that depicts “linked” clusters, 
that is, old clusters that survive into new ones, 
and shows the topics and subtopics across each 
sequence of linked clusters.

Our method attempts to alleviate the problem 
of noisy documents by using a vector of words 
and a vector of n-grams and combining them for 
similarity computation and clustering. The robust-
ness of this two-vector model remains yet to be 
tested. Also, clustering algorithms specifically 
designed for noisy datasets should be considered 
as an alternative. Text preprocessing steps (mainly 
NLP techniques) may reduce the noise in certain 
domains and are thus worth considering.

The survived, linked clusters discovered by 
our approach may give raise to new classes. This 
may hold for clusters that survive over several 
periods but also for sequences of linked clusters 
that are characterized by specific subtopics, that 
is, labels of links that indicate cluster survival 
but topic change. We are interested in formal and 
visual aids for the human expert, so that emerging 
and persistent classes be recognized.
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endnotes

1 Fuzzy classification is beyond the scope of 
our study.

2 The trajectory is determined by the feature 
space and the distance function. If the feature 
space changes over time, then the trajectory 
is not stationary and those methods cannot 
be used.

3 Record ageing in a data stream is usually 
modeled by an ageing function, which en-
sures that old records are gradually forgotten, 
or by a sliding window, which determines 
that records outside the window are forgot-
ten.

4 The documents in the stream were too noisy 
for higher similarity threshold values.

5 This implies that the feature space is vola-
tile.



��0  

Chapter XI
Discovery of Latent Patterns
with Hierarchical Bayesian

Mixed-Membership Models
and the Issue of Model Choice

Cyrille J. Joutard
GREMAQ, University Toulouse, France

Edoardo M. Airoldi
Princetone University, USA

Stephen E. Fienberg
Carnegie Mellon University, USA

Tanzy M. Love
Carnegie Mellon University, USA

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Statistical models involving a latent structure often support clustering, classification, and other data-
mining tasks. Parameterizations, specifications, and constraints of alternative models can be very dif-
ferent, however, and may lead to contrasting conclusions. Thus model choice becomes a fundamental 
issue in applications, both methodological and substantive. Here, we work from a general formulation 
of hierarchical Bayesian models of mixed-membership that subsumes many popular models successfully 
applied to problems in the computing, social and biological sciences. We present both parametric and 
nonparametric specifications for discovering latent patterns. Context for the discussion is provided by 
novel analyses of the following two data sets: (1) 5 years of scientific publications from the Proceedings 
of the National Academy of Sciences; (2) an extract on the functional disability of Americans age 65+ 
from the National Long Term Care Survey. For both, we elucidate strategies for model choice and our 
analyses bring new insights compared with earlier published analyses.
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IntroductIon

Statistical models involving a latent structure 
often support clustering, classification, and other 
data-mining tasks. Because of their ability to 
deal with minimal information and noisy labels 
in a systematic fashion, statistical models of this 
sort have recently gained popularity, and success 
stories can be found in a variety of applications; 
for example, population genetics (Pritchard, Ste-
phens, & Donnelly, 2000; Rosenberg, Pritchard, 
Weber, Cann, Kidd, & Zhivotovsky, 2002), sci-
entific publications (Blei, Ng, & Jordan, 2003; 
Erosheva, Fienberg, & Lafferty, 2004; Griffiths 
& Steyvers, 2004), words and images (Barnard, 
Duygulu, de Freitas, Forsyth, Blei, & Jordan, 
2003), disability analysis (Erosheva, 2002a; Ero-
sheva, 2002b; Erosheva, 2003), fraud detection 
(Neville, Simsek, Jensen, Komoroske, Palmer, 
& Goldberg, 2005), biological sequences & net-
works (Airoldi, Blei, Fienberg, & Xing, 2006b). 
Specifications of alternative models for the same 
application can be very different, however, and 
may lead to contrasting conclusions—we report on 
two such examples in the introductory section to 
the case studies. As a consequence, model choice 
becomes a fundamental issue in applications, both 
methodological and substantive.

Specific models used to support the analyses 
in the previous list can all be viewed as special 
cases, or variants, of hierarchical Bayesian 
mixed-membership models (HBMMMs hence-
forth), a fairly general class of models originally 
characterized by Erosheva & Fienberg (2005). 
Furthermore, the class of HBMMMs is closely 
related to other popular unsupervised data-mining 
methods such as probabilistic principal component 
analysis (Tipping & Bishop, 1999), parametric 
independent component analysis, mixtures of 
Gaussians, factor analysis (Ghahramani, 2005), 
hidden Markov models (Rabiner, 1989), and state-
space models (Airoldi & Faloutsos, 2004). Few 
papers recognize that these methods and diverse 
applications share with HBMMMs a number of 

fundamental methodological issues such as that 
of model choice.

Briefly, HBMMMs allow each object of study, 
for example, words or individuals, to belong to 
more than one class, group, or cluster (Erosheva 
et al., 2004; Erosheva & Fienberg, 2005; Airoldi, 
Blei, Fienberg, & Xing, 2006a). They are Bayes-
ian models specified in terms of a hierarchy of 
probabilistic assumptions that involve three sets 
of quantities:
 
• Observations, x
• Latent variables, θ
• Parameters for the patterns associated with 

the groups, or clusters, β

In other words, the quantities (x, q, β) are organized 
in a directed acyclic graph. The likelihood of the 
data (in its general form) can then be written as 
follows:

      
      (1)( ) 1 ( , | ) ( ),k kx f x D d∞

=| = Π∫

where the quantity Da(dq) is a prior distribution 
over the latent variables with hyper-parameter a, 
and the product runs over the (possibly infinite) 
number of groups, or clusters, and associated pat-
terns. During pattern discovery, that is, posterior 
inference, we condition on the observed data and 
maximize the likelihood with respect to the sets 
of parameters, βk, that describe the patterns as-
sociated with the groups.

The focus in pattern discovery with HBM-
MMs is not on the variable amount of information 
about the labels for the objects, but rather it is on 
the hierarchy of probabilistic assumptions that 
we believe provide the structure underlying the 
data and ultimately lead to the likelihood func-
tion. Whatever the amount of information about 
the class labels, full, partial, minimal, or none, 
we simply treat the information as observations 
about the attributes and we condition upon it. The 
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missing information about the labels or weights 
on the classes or groups is recovered during pat-
tern discovery (i.e., posterior inference) as is the 
information about other nonobservable patterns. 
In this sense, HBMMMs are essentially soft-clus-
tering models in that the mixed-membership error 
model for the labels associates each observation 
with a vector of memberships that sum to one. The 
parameters of this error model inform the average 
abundance of specific class labels without impos-
ing hard constraints, for example, must-belong or 
must-not belong. Rather, the constraints are soft, 
probabilistic constraints.

the Issue of Model choice

As we hinted in the discussion above, in these mod-
els classification and clustering tasks correspond 
to the same mathematical problem of maximizing 
the likelihood. This, in turn, resolves the mixed 
membership of observations to categories (which 
are typically observed only for a negligible portion 
of the data), and discovers the patterns underly-
ing the data—in other words, we get maximum 
likelihood estimates for (q, β). Figure 1 illustrates 
these concepts. A fundamental issue of HBMMMs 
is that of model choice, that is, the choice of the 
number of latent categories, groups, or clusters. 
Positing an explicit model for the category labels 
requires a choice regarding the number of existing 

categories in the population, that is, the “choice” 
of the model. A parametric model for the labels 
would assume the existence of a predetermined 
number, K, of categories, whereas a nonparametric 
error model would let the number of categories 
grow with the data.

Figure 1 presents an illustrative example. The 
raw data (left panel) consist of 3 lists of words; 
namely {ARC, AND, ART, ANT}, {BIT, BOT, 
BET, BAT}, and {BAR, BUS, BIN, BAT}. We are 
interested in finding patterns (word templates) that 
generate the lists. A hypothetical model that posits 
2 latent patterns (central panel) finds A** and B** 
as good descriptive patterns for the lists of words, 
and resolves the mixed memberships of lists to 
patterns, given the lists. A hypothetical model that 
posits 3 latent patterns (right panel) finds A**, **T, 
and B** as good descriptive patterns for the lists 
of words, and resolves the mixed memberships of 
lists to patterns, given the lists. What is the goal 
of the analysis? Which model suits it best? In this 
chapter, we explore and discuss methodology and 
strategies to answer these questions in the context 
an application. For now, note that the issue of 
model choice in this simple example translates 
into the question of “how many patterns?” there 
are, underlying the data. Furthermore, note that 
the issue of model choice depends crucially on 
the goals of the analysis. Following the intuition 
developed in the example, in a situation where 

Figure 1. A simple example of a mixed membership model applied to word lists
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we believe the letter patterns tell us something 
substantive about the lists of words, we may be 
interested in estimating the membership of a new 
list to those patterns. Consider the new list {BAT, 
CAT, RAT}; in this case the model with 3 patterns 
would prove more useful in describing the list, 
when compared to the model with 2 patterns.

In the following sections, we explore the issue 
of model choice in the context of HBMMMs, both 
theoretically and computationally, by investigat-
ing the nexus between strategies for model choice, 
estimation strategies, and data integration in the 
context of data extracted from scientific publica-
tions and American elderly.

overview of the chapter

In this chapter, we present the following ideas and 
results: (1) we describe HBMMMs a class of mod-
els that respond to the challenges introduced by 
modern applications, and we characterize HBM-
MMs in terms of their essential probabilistic ele-
ments; (2) we identify the issue of “model choice” 
as a fundamental task to be solved in each applied 
data mining analysis that uses HBMMMs; (3) we 
survey several of the existing strategies for model 
choice; (4) we develop new model specifications, 
as well as use old ones, and we employ different 
strategies of model choice to find “good” mod-
els to describe problems involving text analysis 
and survey data; (5) we study what happens as 
we deviate from statistically sound strategies in 
order to cut down the computational burden, in 
a controlled experimental setting.

Although “common wisdom” suggests that dif-
ferent goals of the analysis (e.g., prediction of the 
topic of new documents or of the disability profile 
of a new person age 65 or over, vs. description of 
the whole collection of documents in terms of top-
ics or of the elderly in terms of disability profiles) 
would lead us to choose different models, there 
are few surprises. In fact, from the case studies 
we learn that: 

1. Independently of the goal of the analysis, 
for example, predictive versus descriptive, 
similar probabilistic specifications of the 
models often support similar “optimal” 
choices of K, that is, the number of latent 
groups and patterns; 

2. Established practices aimed at reducing 
the computational burden while searching 
for the best model lead to biased estimates 
of the “optimal” choices for K, that is, the 
number of latent groups and patterns. 

Arriving at a “good” model is a central goal of 
empirical analyses. These models are often useful 
in a predictive sense. Thus our analyses in the 
present chapter is relevant as input to (1) those 
managing general scientific journals as they re-
examine current indexing schemes or considering 
the possible alternative of an automated indexing 
system, and (2) those interested in the implica-
tions of disability trends among the US elderly 
population as the rapid increase in this segment 
of the population raises issue of medical care and 
the provision of social security benefits.

tWo MotIvAtInG cAse studIes

Our study is motivated by two recent analyses 
about a collection of papers published in the 
Proceedings of the National Academy of Sci-
ences (PNAS) (Erosheva et al. 2004; Griffiths 
& Steyvers 2004), and by two recent analyses 
of National Long Term Care Survey data about 
disabled American elderly (Erosheva, 2002a; 
Erosheva, 2002b; Erosheva, 2003; Erosheva & 
Fienberg, 2005; Stallard, 2005).

PnAs biological sciences collection 
(1997–2001)

Erosheva et al. (2004) and Griffiths and 
Steyvers (2004) report on their estimates about the 
number of latent topics, and find evidence that sup-
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ports a small number of topics (e.g., as few as eight 
but perhaps a few dozen) or as many as 300 latent 
topics, respectively. There are a number of differ-
ences between the two analyses: the collections 
of papers were only partially overlapping (both in 
time coverage and in subject matter), the authors 
structured their dictionary of words differently, 
one model could be thought of as a special case of 
the other but the fitting and inference approaches 
had some distinct and nonoverlapping features. 
The most remarkable and surprising difference 
come in the estimates for the numbers of latent 
topics: Erosheva et al.  (2004) focus on values like 
8 and 10 but admit that a careful study would likely 
produce somewhat higher values, while Griffiths 
& Steyvers (2004) present analyses they claim 
support on the order of 300 topics! Should we 
want or believe that there are only a dozen or so 
topics capturing the breadth of papers in PNAS or 
is the number of topics so large that almost every 
paper can have its own topic? A touchstone comes 
from the journal itself. PNAS, in its information 
for authors (updated as recently as June 2002), 
states that it classifies publications in biological 
sciences according to 19 topics. When submit-
ting manuscripts to PNAS, authors select a major 
and a minor category from a predefined list of 19 
biological science topics (and possibly those from 
the physical and/or social sciences).

Here, we develop an alternative set of analyses 
using the version of the PNAS data on biological 
science papers analyzed in Erosheva et al. (2004). 
We employ both parametric and nonparametric 
strategies for model choice, and we make use of 
both text and references of the papers in the col-
lection, in order to resolve this issue. This case 
study gives us a basis to discuss and assess the 
merit of the various strategies.

disability survey data (1982–2004)

In the second example, we work with an excerpt 
of data from the National Long-Term Care Survey 
(NLTCS) to illustrate the important points of our 

analysis. The NLTCS is a longitudinal survey of 
the U.S. population aged 65 years and older with 
waves conducted in 1982, 1984 1989, 1984, 1999 
and 2004. It is designed to assess chronic disabil-
ity among the US elderly population especially 
those who show limitations in performing some 
activities that are considered normal for everyday 
living. These activities are divided into activities 
of daily living (ADLs) and instrumental activities 
of daily living (IADLs). The ADLs are basic ac-
tivities of hygiene and healthcare: eating, getting 
in/out of bed, moving inside the house, dressing, 
bathing, and toileting. The IADLs are basic activi-
ties necessary to reside in the community: doing 
heavy housework, doing light housework, doing 
the laundry, cooking, grocery shopping, moving 
outside the house, traveling, managing money, 
taking medicine, and telephoning. The subset 
of data was extracted by Erosheva (2002a) from 
the analytic file of the public use data file of the 
NLTCS. It consists of combined data from the 
first four survey waves (1982, 1984, 1989, 1994) 
with 21,574 individuals and 16 variables (6 ADL 
and 10 IADL). For each activity, individuals are 
either disabled or healthy on that activity (in the 
data table, this is coded by 1 if the individual 
is disabled and 0 if he is healthy). We then deal 
with a  contingency table. Of the 536,65216 =  
possible combinations of response patterns, only 
3,152 are observed in the NLTCS sample.

Here we complement the earlier analyses 
of Erosheva (2002a) and Erosheva & Fien-
berg (2005). In particular, these earlier analyses 
focused primarily on the feasibility of estimation 
and model selection under the presumption that 
K was small, that is, equal or less than five. We 
focus on increasing the number of latent profiles 
to see if larger choices of K result in better de-
scriptions of the data and to find the value of K 
which best fits the data.
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chArActerIzInG hbMMMs

There are a number of earlier instances of mixed-
membership models that have appeared in the 
scientific literature, for example, see the review in 
Erosheva & Fienberg (2005). A general formula-
tion due to Erosheva (2002a), and also described 
in Erosheva et al. (2004), characterizes the models 
of mixed-membership in terms of assumptions at 
four levels. Figure 2 shows a graphical represen-
tation of HBMM models and an example of one 
used in this chapter. In the presentation below, 
we denote subjects with n∈[1,N] and observable 
response variables with j∈[1,J].

A1–Population Level. Assume that there are K 
classes or subpopulations in the population of in-
terest J distinct characteristics. We denote by f(xnj 
| βjk) the probability distribution of j-th response 
variable in the k-th subpopulation for the n-th sub-
ject, where βjk is a vector of relevant parameters, 
j∈[1,J],and k∈[1,K]. Within a subpopulation, the 
observed responses are assumed to be independent 
across subjects and characteristics.

A2–Subject Level. The components of the 
membership vector qn = (qn[1],...,qn[k]) represent 
the mixed-membership of the n-th subject to the 
various subpopulations. The distribution of the 
observed response xnj given the individual mem-
bership scores qn, is then: 

      
[ ]

1
Pr( | ) ( | )

K

nj n n k nj jk
k

x f x
=

= .∑
   (2)

Conditional on the mixed-membership scores, 
the response variables xnj are independent of one 
another and independent across subjects.

A3–Latent Variable Level. Assume that the 
vectors qn, that is, the mixed-membership scores 
of the n-th subject, are realizations of a latent 
variable with distribution aD , parameterized by 
vector a. The probability of observing xnj, given 
the parameters, is then:

       
           

[ ]
1

Pr( | , ) ( | ) ( )
K

nj n k nj jk
k

x f x D d
=

 
= . 

 
∑∫

      (3)
A4–Sampling Scheme Level. Assume that the R 
independent replications of the J distinct response 

Figure 2. Left: A graphical representation of hierarchical Bayesian models of mixed-membership. Right: 
Models of text and references used in this paper. Specifically, we pair replicates of variables 1 2{ , }r rx x  with 
latent vectors  1 2{ , }r rz z  that indicate which latent aspects inform the parameters underlying each individual 
replicate. The parametric and non-parametric version of the error models for the label discussed in the 
text refer to the specification of Da - a Dirichlet distribution versus a Dirichlet process, respectively.
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variables corresponding to the n-th subject are 
independent of one another. The probability of 
observing 1 1{ , , }r r R

n nJ rx x = , given the parameters, 
is then: 

  

1 1

11 1

Pr({ , , } | , )

( | ) ( )

r r R
n nJ r

J R K

nk nj jk
kj r

x x

f x D d

=

== =

=

 
. 

 
∑∏∏∫



      (4)

The number of observed response variables is 
not necessarily the same across subjects, that is, 
J = Jn. Likewise, the number of replications is not 
necessarily the same across subjects and response 
variables, that is, R = Rnj.

example 1: latent dirichlet 
Allocation

Our general framework encompasses popular 
data mining models, such as the one labeled as 
the “latent Dirichlet allocation” model (LDA) by 
Minka and Lafferty (2002) and Blei et al. (2003) 
for use in the analysis of scientific publications.

For the text component of the PNAS data: 
subpopulations correspond to latent “topic’’, in-
dexed by k; subjects correspond to “documents”, 
indexed by n; J=1, that is, there is only one re-
sponse variable that encodes which “word” in the 
vocabulary is chosen to fill a position in a text 
of known length, so that j is omitted; positions 
in the text correspond to replicates, and we have 
a different number of them for each document, 
that is we observe n positions filled with words in 
the n-th document. The model assumes that each 
position in a document is filled with a word that 
expresses a specific topic, so that each document 
is the expression of possibly different topics. In 
order to do so, an explicit indicator variable r

nz  
is introduced for each observed position in each 
document, which indicates the topic that expresses 
the corresponding word. The function:

( | ) Pr( 1 | ) ( ,1)r r r
n k n n kf x x z k Multinomial= = = =

where βk is a random vector the size of the vocabu-
lary, say V, and [ ]1

V
k vv=

=1∑ . A mixed-member-
ship vector Θn is associated to the n-th document, 
which encodes the topic proportions that inform 
the choice of words in that document, and it is 
distributed according to Da (i.e., a Dirichlet distri-
bution). We obtain equation 2 integrating out the 
topic indicator variable r

nz  at the word level—the 
latent indicators r

nz  are distributed according to a 
multinomial (qn, 1).

Most of our analyses also incorporate the 
references and we use the generalization of LDA 
introduced in Erosheva et al. (2004) for J=2, that 
is, words and references which are taken to be 
independent.

The issue of model choice we introduced in 
the introduction translates into the choice about 
the number of nonobservable word and reference 
usage patterns (latent topics) that best describe a 
collection of scientific publications.

example 2: Grade of Membership 
Model

The “Grade of Membership,” or GoM, model 
is another specific model that can be cast in 
terms of mixed-membership. This model was 
first introduced by Woodbury in the 1970’s in 
the context of medical diagnosis (Woodbury, 
Clive, and Garson (1978) and was developed 
further and elaborated upon in a series of papers 
and in Manton, Woodbury, and Tolley (1994). 
Erosheva (2002a) reformulated the GoM model 
as a HBMMM.

In the case of the disability survey data, there 
are no replications, that is, Rn = 1. However we con-
sider several attributes of each elderly American, 
that is, J=16 daily activities. Further, the scalar 
parameter βjk is the probability of being disabled 
on the activity j for a complete member of latent 
profile k, that is: 
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( 1| 1)jk j kP x= = =

Since we deal with binary data (individuals are 
either disabled or healthy), the probability distri-
bution f(xj | βjk) is a Bernoulli distribution with 
parameter βjk. Therefore, a complete member n 
of latent profile k is disabled on the activity j, that 
is, xnj = 1, with probability βjk. In other words, 
introducing a profile indicator variable znj, we 
have P(xnj = 1 | znj = k) = βjk. Each individual n is 
characterized by a vector of membership scores 
qn = (qn1,...,qnk). We assume that the membership 
scores qn follow the distribution Da (for example 
a Dirichlet distribution with parameter a = (a1,...
ak,...,aK). Note that the ratio k k/∑  represents 
the proportion of the population that belongs to 
the k-th latent profile).

In this application, the issue of model choice 
translates into the choice about the number of 
nonobservable disability propensity profiles (la-
tent profiles) that best describe the population of 
elderly Americans.

relationship with other data Mining 
Methods

In order to situate HBMMMs in a familiar land-
scape, we discuss similarities with other unsu-
pervised data mining methods. In fact, in many 
applications including those we present in this 
chapter, HBMMMs are used in an unsupervised 
fashion, with no information about class labels. 
Recall that in our problem we want to group ob-
servations about N subjects 1:

1{ }nR N
n nx =  into, say, K 

groups. K-means clustering, for example, searches 
for K centroids m1:K that minimize: 

 1: 1: 2

1 1

1 ( ) || ||n n

K N
R R

n n k
k n

MSE I x k x m
N = =

= ∈ - ,∑∑

where the centroids m1:K are centers of respective 
clusters in the sense of Euclidean norm. Subjects 
have single group membership in K-means. In the 

mixture of Gaussians model, a popular HBMMM 
that extends K-means, the MSE scoring crite-
rion is substituted by the likelihood ,

( , )
n k

n k∑ 

. Further, we have unknown mixed-membership 
vectors qn, that relax the single membership of 
K-means. The connection is given by the fact that 
the mixed-membership vectors qn, that is, the class 
abundances, have a specific form in K-means, that 
is, for the n-th subject we can write: 

 
[ ]

n
n k

if k j
otherwise

1 =
= 0 ,

where arg min{ ( , ) : [1, ]}nj n k k K= ∈ . In a gen-
eral specification of HBMMMs we introduce Da  
distributed mixed-membership vectors, qn, also 
unknown. Further, in HBMMMs it is possible 
to have a more complicated likelihood structure, 
which follows specifications in the section on 
characterizing HBMMMS.

Methods such as factor analysis (Spearman, 
1904; Ghahramani, 2005) and Principal Com-
ponent Analysis (Hotelling, 1933; Jolliffe, 1986) 
cannot be subsumed under the general formula-
tion of HBMMMs, however, they too make use 
of statistical models that include latent patterns, 
that is, the factors and the components, in order 
to explain variability in the data. Alternatives 
exist for classification and clustering that are not 
generative, that is, approaches that are not based 
on a generating process for the data. Methods that 
fall under this category are very different in spirit; 
they study the properties of the cloud of data points 
with the goal of separating them directly, using 
some notion of distance. For example, manifold-
based methods induce a smooth manifold from 
the geometry of the cloud of data points, and 
use the Euclidean distance on such manifold to 
separate them (Belkin & Niyogi, 2003). Support 
vector machines project the data points into a high 
dimensional linear space, and compute distances 
between them in such a space, implicitly, using a 
prespecified Kernel (Schölkopf & Smola, 2002). 
To conclude this brief review, note that HBMMMs 
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also induce a notion of distance on the data space, 
implicitly, through the likelihood.

strAteGIes for Model choIce

Although pathological examples can be built, 
where slightly different model specifications lead 
to quite different analyses and choices of key 
parameters, in real situations we expect models 
with similar probabilistic specifications to sug-
gest roughly similar choices for the number of 
groups, K.

In our applications to the study of scientific 
publications and disability survey data we explore 
the issue of model choice by means of different 
criteria, of which two popular choices in the data 
mining community: namely, cross-validation 
(Hastie, Tibshirani & Friedman, 2001), and a 
Dirichlet process prior (Antoniak, 1974).

choice Informed by the Ability to 
Predict

Cross-validation is a popular method to estimate 
the generalization error of a prediction rule (Hastie 
et al., 2001), and its advantages and flaws have 
been addressed by many in that context, for ex-
ample, Ng (1997). More recently, cross-validation 
has been adopted to inform the choice about the 
number groups and associated patterns in HBM-
MMs (Barnard et al., 2003; Wang, Mohanty, & 
McCallum, 2005)

Guidelines for the proper use of cross-valida-
tion in choosing the optimal number of groups K, 
however, have not been systematically explored. 
One of the goals of our case studies is that of 
assessing to what extent cross-validation can be 
“trusted” to estimate the underlying number of 
topics or disability profiles.

In particular, given the nonnegligible influence 
of hyperparameter estimates in the evaluation of 
the held-out likelihood, that is, the likelihood on 
the testing set, we discover that it is important 

not to bias the analysis with “bad estimates” of 
such parameters, or with arbitrary choices that 
are not justifiable using preliminary evidence, 
that is, either in the form of prior knowledge, or 
outcome of the analysis of training documents. To 
this extent, estimates with “good statistical proper-
ties,” for example, empirical Bayes or maximum 
likelihood estimates should be preferred to others 
(Carlin & Louis, 2005).

the dirichlet Process Prior

Positing a Dirichlet process prior on the number 
of latent topics is equivalent to assuming that 
the number of latent topics grows with the log 
of the number of, say, documents or individuals 
(Ferguson, 1973; Antoniak, 1974). This is an 
elegant model selection strategy in that the selec-
tion problem becomes part of the model itself, 
although in practical situations it is not always 
possible to justify. A nonparametric alternative to 
this strategy, recently proposed (McAuliffe, Blei, 
& Jordan, 2006), uses the Dirichlet Process prior 
is an infinite dimensional prior with a specific 
parametric form as a way to mix over choices of K. 
This prior appears reasonable, however, for static 
analyses of scientific publications that appear in a 
specific journal. Kuma, Raghavan, Rajagopalan, 
Sivakumar, Tomkins, and Upfal (2000) specify 
toy models of evolution, which justify the scale-
free nature of the relation between documents 
and topics using the Dirichlet process prior for 
exploratory data analysis purposes.

other criteria for Model choice

The statistical and data mining literatures contain 
many criteria and approaches to deal with the 
issue of model choice, for example, reversible 
jump MCMC techniques, Bayes factors and other 
marginal likelihood methods, cross-validation, 
and penalized likelihood criteria such as the 
Bayesian information criterion (BIC) (Schwartz, 
1978; Pelleg & Moore 2000), the Akaike informa-
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tion criterion (AIC) (Akaike, 1973), the deviance 
information criterion (DIC) (Spiegelhalter, Best, 
Carlin, & Van der Linde, 2002), minimum descrip-
tion length (MDL) (Chakrabarti, Papadimitriou, 
Modha, & Faloutsos, 2004). See Han & Kamber 
(2000) for a review of solutions in the data min-
ing community.

AIC has a frequentist motivation and tends to 
pick models that are too large when the number of 
parameters is large—it does not pay a high enough 
penalty. BIC and DIC have Bayesian motivations 
and thus fit more naturally with the specifications 
in this chapter. Neither is truly Bayesian for HBM-
MMs; however DIC involves elements that can 
be computed directly from MCMC calculations, 
and the variational approximation to the posterior 
(described in detail below) allows us to integrate 
out the nuisance parameters in order to compute 
an approximation to BIC for different values of K. 
Therefore, we explore the use of both DIC and BIC 
in connection with the variational approximation 
for the NLTCS disability data where we can look 
at both criteria in action together.

cAse study: PnAs scIentIfIc 
collectIon 1997–2001

As mentioned previously, our analyses are moti-
vated by two recent analyses of extracts of papers 
published in the Proceedings of the National Acad-
emy of Sciences (PNAS). Erosheva et al. (2004, 
2005) and Griffiths & Steyvers (2004) report on 
wildly different numbers of latent topics, as few as 
8 but perhaps a few dozen versus 300. We attempt 
to provide an explanation for the divergent results 
here. In the process we explore how to perform 
the model selection for hierarchical Bayesian 
models of mixed-membership. After choosing 
an “optimal” value for the number of topics, K*, 
and its associated words and references usage 
patterns, we also examine the extent to which 
they correlate with the “actual” topic categories 
specified by the authors.

Modeling text and references

In this section we introduce model specifications 
to analyze the collection of papers published in 
PNAS, which were submitted by the respective 
authors to the section on biological sciences. All 
our models can be subsumed into the general 
formulation of HBMMMs previously presented. 
We organize them into finite and infinite mixture 
models, according to the dimensionality of the 
prior distribution, Da, posited at the latent variable 
level—assumption A3.

We characterize an article, or document, by 
the words in its abstract and the references in 
its bibliography. Introducing some notation, we 
observe a collection of N documents, D1:N. The 
n-th document is represented as 1 21: 1:

1 2( , )n nR R
n n nD x x=  

where 1n is a word in the abstract and 2n is a 
reference in the bibliography, and where 1n is the 
number of positions in the text of the abstract oc-
cupied by a word, and 2n is the number of items 
in the bibliography occupied by a reference. As in 
the latent Dirichlet allocation example previously 
introduced, positions (the order of which does not 
matter), or spots, in the text of the abstracts are 
modeled as multinomial random variables with 
1 coordinates and unitary size parameter. That 
is, random variables are associated with spots 
in the text and their values encode which word 
in the vocabulary (containing 1 distinct words) 
occupies a specific spot. The number of spots 
is observed, R1n. We model the references in a 
similar fashion. Each item in the bibliography is 
modeled as multinomial random variables with 
2 coordinates and unitary size parameter. Values 
of these variables encode which reference in the 
set of known citations (2 of them) was used as a 
specific bibliography item. Again, the number of 
bibliography items is observed, R2n. That is, words 
and references are vectors of size V1, respectively 
V2, with a single nonzero, unitary component. 
We denote by [ ]

r
jn vx  the v-th component of r

jnx , 
for j=1,2.
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Below, whenever the analysis refers to a single 
document, the document index n is omitted.

a) finite Mixture: the Model

In the finite mixture case, we posit the following 
generative process for each document. 
1. Sample the mixed-membership vector q ~ 

Da. 
2. For each of the 1 spots in the text of the 

abstract: 
2.1. Sample the topic indicator: 
 

1 | ~ ( ,1)rz Multinomial
2.2. Sample 1 1 1| ~r r rx z Multinomial z1( ,1). 
3. For each of the R2 items in the bibliogra-

phy: 
3.1. S a m p l e  t o p i c  i n d i c a t o r 

2 | ~ ( ,1)rz Multinomial  
3.2. Sample 2 2| ~r r rx z Multinomial z2 2( ,1).
 
In this model, a is a Dirichlet (a1,...aK) distribution 
with ak = a for all k, and (β1, β2) are two matrices 
of size (V1 × K) and (V2 × K) respectively. The topic 
indicators, 1 2( , )r rz z , are latent column vectors of 
with K coordinates, only one of which assumes 
a unitary value.

The hyper-parameters of this model are 
the symmetric Dirichlet parameter a, and the 
multinomial parameters for words, (β1[., k]) and 
references, (β2[., k]) for each of the latent topics 
k=1,…,K. That is, through pairs of correspond-
ing columns of the two β matrices we define a 
parametric representation of the K subpopulations 
(see assumption A1), which we refer to as topics 
in this application. Technically, they are pairs of 
latent distributions over the vocabulary and the 
set of known citations. In other words, element 
(v, k) of β1 encodes the probability of occurrence 
of the v-th word in the vocabulary (containing 1 
distinct words) when the k-th topic is active, that 
is, , 1[ ] 1[ ]Pr( 1| )r r

v k v kx z1[ ] = = , with the constraint 
that 1[ , ]v kv

=1∑  for each k. Similarly, element 
(v, k) of β2 encodes the probability of occurrence 
of the v-th reference in the set of known citations 

(2 of them) when the k-th topic is active. Note 
that, through the latent topic indicators, we as-
sociate each spot in the text, that is, each word 
instance, with a latent topic. As a consequence, 
separate instances of the v-th vocabulary word 
in the same abstract1 can be generated from dif-
ferent topics.

In this finite mixture model, we assume that 
the number of latent topics is unknown but fixed 
at K. Our goal is to find the optimal number of 
topics, K* , which gives the best description of 
the collection of scientific articles.

b) Infinite Mixture: The Model

In the infinite mixture case we posit a simpler 
and more traditional type of clustering model, 
by assuming that each article Dn is generated by 
one single topic. However, in this case we do not 
need to fix the unknown number of topics, K, 
prior to the analysis.

The infinite mixture model is based upon a 
more compact representation of a document, Dn = 
(x1n, x2n), in terms of a vector of word counts:

1

1 1
1

R
r

n n
r

x x
=

= ∑ 

of size 1, and a vector of reference counts,

2

2 2
1

R
r

n n
r

x x
=

= ∑  , 

of size 2. In fact, given that word instances and 
bibliography items in the same document can-
not be generated by different topics, we do not 
need the finer representation 

1 21: 1:
1 2( , )R R
n nx x . Further, 

given that each article can only be generated by a 
single topic, the mixed membership vectors, q1:N, 
become single membership vectors. This means 
that each qnhas a single unitary component, while 
the remaining components equal zero. However, 
in the infinite mixture model we do not assume 
a fixed dimensionality, K, for the membership 
vectors q1:N. That is, prior to the analysis, the 
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number of subpopulations (see assumption A1) 
is unknown and possibly infinite.

It is more convenient to write the infinite 
mixture model as a generative process for the 
whole collection of documents altogether, D1:N, 
rather than for a single document as in the pre-
vious section. In order to promote clarity in this 
setting, we change the notation slightly. Instead of 
working with the single membership vectors, q1:

N, it is more convenient to introduce a latent topic 
indicator vector, c, whose n-th component, c[n], 
encodes the topic assignment of the correspond-
ing document, Dn. That is, c[n] = k if qn[k] = 1 for 
n=1,…,N. Note that, because of single member-
ship, qn[k] = I(c[n] = k) for all k. Further, because of 
the restriction of one topic per document, if qn[k] = 
1 then, 1 [ ] 2 [ ] 1r r

n k n kz z= =  for all word instances and 
bibliography items r. This collection of equalities, 
for a given document Dn, is summarized and 
simplified by writing c[n] = k.

We can now posit the generative process for 
the whole collection of documents, D1:N. 

1. c ~ Da. 
2. For each of the K distinct values of c: 
2.1. β[1:V1, k] ~ Dirichlet(h1[1],...,h1[V1]). 
2.2. β2[1:V2, k] ~ Dirichlet(h2[1],...,h2[V1]). 
3. For each of the N documents: 
3.1. 

11 1:| ~
nn n V c nx c Multinomial R

[ ]1 [ ] 1[ , ] 1, ( , ). 
3.2. 

22 1:| ~
nn n V c nx c Multinomial R

[ ]2 [ ] 2[ , ] 2, ( , ).
 

In this model, Da is the Dirichlet process prior 
with parameter a, introduced and discussed in 
Aldous (1985) and Neal (2000). The distribu-
tion Da models the prior probabilities of topic 
assignment for the collection of documents. In 
particular, for the n-th document, given the set of 
assignments for the remaining documents, c|– 1|, 
this prior puts on the k-th topic (out of K distinct 
topic assignment observed in c|– n|) a mass that 
is proportional to the number of documents as-
sociated with it. It also puts prior mass on a new, 
(K+1)-th topic, which is distinct from the topic 
assignments (1,…,K) observed in c|– n|. That is, 

Da  entails prior probabilities for each component 
of c as follows:

[ ] [ ]

( , ) ( , ) 0
1

Pr( | ) ( ) 1
1

0

n n

m n k if m n k
N

c k c if k K n
N

otherwise

-

- - > - +
= = = - +

- -



where c|– n| denotes the latent topic indicator vec-
tor without the n-th component; m(-n, k) is the 
number of documents that are associated with 
the k-th topic, other than the n-th document, that 
is, [ ]1

( , ) ( , )n
ii

m n k I c k i n
=

- = = ≠∑ ; and K(-n) is 
the number of observed, distinct topics that are 
associated with at least one document, other than 
the n-th document.

The hyper-parameters of this model are the 
scaling parameter of the Dirichlet process prior, 
a, and the two vectors of Dirichlet parameters, 
(h1, h2), that control the latent topics of words and 
references, respectively. Note that the topics, that 
is, latent pairs of distributions, are not hyper-pa-
rameters of the model in our specification of the 
infinite mixture model. Rather, we smooth the 
topics by positing a pair of Dirichlet priors on 
them, and the corresponding parameter vectors 
(h1, h2) become the hyper-parameters at the top 
of the model hierarchy. In our implementation we 
assume symmetric Dirichlet priors for the topics, 
such that h[k] = h1 scalar, and h2[k] = h2 scalar, for 
all components k=1,…,K.

In this model, we assume that the number of 
latent topics, K, is unknown and possibly infinite, 
through the prior for c, Da. In order to find the 
number of topics that best describes the collec-
tion of scientific articles, we study the posterior 
distribution of c.
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Inference

In this we develop posterior inference for both 
the finite and infinite mixture models above. In 
particular, we use variational methods for the 
finite mixture model and Monte Carlo Markov 
chain (MCMC) methods for the infinite mixture 
model. 

a) finite Mixture: Inference

In the finite mixture case, we assume the number 
of topics (K<∞) is fixed during inference. Unfor-
tunately, the likelihood of a document according 
to this model:

           (6)1 2

1 1 2 2
1[ ] 2[ ]

1: 1:
1 2 1 2

1[ , ] 2[ , ]
1 11 1 1 1 1

( , | , , )

( ) ( ) ( )
r r

v v

R R

R V R VJ K K
x x

k v k k v k
k kj r v r v

p x x

D d
= == = = = =

  
=   

  
∑ ∑∏ ∏ ∏ ∏ ∏∫

does not have a closed form solution. We need the 
likelihood to compute the joint posterior distribu-

tion of the mixed-membership scores and the topic 
and reference latent indicator vectors: 

           (7)
1 2 1 2

1 2 1 2

1 2

1: 1: 1: 1:
1 2 1 2 1 2
1: 1: 1: 1:
1 2 1 2 1 2

1: 1:
1 2 1, 2

( , , | , , , , )

( , , , , | , , )
( , | , )

R R R R

R R R R

R R

p z z x x
p z z x x

p x x

=

at the denominator of the right hand side of equa-
tion 7. The variational method prescribes the use 
of a mean-field approximation to the posterior 
distribution in equation 7. Such an approxima-
tion leads to a lower bound for the likelihood of 
a document, which depends upon a set of free 
parameters ( 1 21: 1:

1 2, ,R R ) for each individual. These 
free parameters are introduced in the mean-field 
approximation, and are set to minimize the Kull-
back-Leibler (KL henceforth) divergence between 
true and approximate posteriors.

The “variational EM” algorithm we develop 
for performing posterior inference (see Figure 3) 
is therefore an approximate EM algorithm. During 

Figure 3. The variational EM algorithm to solve the Bayes problem in finite mixture model of text and 
references, described above (finite mixture case). Note, the M step updates (steps 7 and 8) are performed 
incrementally in our implementation, within step 6 of the algorithm outlined above, thus speeding up 
the overall computation.
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the M step, we maximize the lower bound for the 
likelihood over the hyperparameters of the model, 
(a, β1, β2), to obtain to (pseudo) maximum likeli-
hood estimates. During the E step, we tighten the 
lower bound for the likelihood by minimizing 
the KL divergence between the true and the ap-
proximate posteriors over the free parameters, 

1 21: 1:
1 2, ,R R , given the most recent estimates for 

the hyperparameters.
In the M step, we update the hyper-parameters 

of the model, (a, β1, β2) by maximizing the tight 
lower bound for the likelihood over such hyper-
parameters. Given the most recent updates of the 
free parameters the bound depends on, 1 21: 1:

1 2, ,R R  
. This leads to the following (pseudo) maximum 
likelihood estimates for the parameters: 
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where n is the document index, introduced above. 
The document index is necessary as we make use 
of the counts about specific words and references 
observed in all documents in order to estimate the 
corresponding conditional probabilities of occur-
rence, that is, the latent topics. Unfortunately a 
closed form solution for the (pseudo) maximum 
likelihood estimates of a does not exist. We can 
produce a method that is linear in time by using 
Newton-Raphson, with the following gradient 
and Hessian for the log-likelihood
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Figure 4. The mean-field approximation to the likelihood for the finite mixture model of text and refer-
ences, described above (finite mixture case).
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The variational EM algorithm is summarized in 
Figure 3.

In the approximate E step, we update the 
free parameters for the mean-field approxima-
tion of the posterior distribution in Equation 7, 

1 21: 1:
1 2, ,R R , given the most recent estimates of 

the hyper-parameters of the model, (a, β1, β2), 
for each individual as follows:
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This minimizes the posterior KL divergence 
between true and approximate posteriors, at 
the document level, and leads to a new lower 
bound for the likelihood of the collection of 
documents. Note that the products over words 
and references in Equations 10 and 11 serve the 
purpose of selecting the correct probabilities of 
occurrence in the respective vocabularies, which 
correspond to the word and reference observed 
at a specific position, (r1, r2), in the document. 
That is, the updates of the free parameters 
( r r

k k
1 2

1[ ] 2[ ], ) only depend on the probabilities (β1[v1, 

k], β2[v2, k]), where 1
1 1[ ]: { . . r
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2

2 2 2[ ]: { . . r
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the updates simplify to: 
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The mean-field approximation to the likelihood 
we described above is summarized in Figure 4.

In order to develop the mean-field approxima-
tion for the posterior distribution in equation 7 we 
used in the E step above, we posit N independent 
fully factorized joint distributions over the latent 
variables, one for each document:
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which depends on the set of previously mentioned 
free parameters, 1 21: 1:

1 2( , , )R R . The mean-field ap-
proximation consists in finding an approximate 
posterior distribution: 

                             
           , 1 2 1 21: 1: 1: 1:

1 2 1 2 1 2( , , | , , , , , )R R R Rp z z  



where the conditioning on the data is now obtained 
indirectly, trough the free parameters:

                      ( )1 21: 1:
1 2, ,R Rx x= 

( )1 1 1 21: 1: 1: 1:
1 1 1 2, ,R R R Rx x= 

( )2 2 1 21: 1: 1: 1:
2 2 1 2, .R R R Rx x= 

The factorized distribution leads to a lower bound 
for the likelihood; in fact it is possible to find a 
closed form solution to the integral in Equation 6 
by integrating the latent variables out with respect 
to the factorized distribution. An approximate 
posterior, p, is computed by substituting the 
lower bound for the likelihood at the denominator 
of equation 7. The mean-field approximation in 
then obtained by minimizing the Kullback-Leibler 
divergence between the true and the approximate 
posteriors, over the free parameters.

The mean-field approximation has been used 
in many applications over the years (Bathe, 
1996; Parisi, 1988; Rustagi, 1976; Sakurai, 1985). 
Intuitively, the approximation aims at reducing 
a complex problem into a simpler one by “de-
coupling the degrees of freedom in the original 
problem.” Such decoupling is typically obtained 
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via an expansion that involves additional, free 
parameters that are problem dependent, for ex-
ample, 

1 21: 1:
1 2 1{ , , }R R N

n n n n= , in our model above. A 
thorough treatment of such methods, which focus 
on applications to statistics and machine learn-
ing, is given in Jordan, Ghahramani, Jaakkola, 
and Saul (1999), Wainwright and Jordan (2003), 
Xing, Jordan, and Russell (2003). We have adapted 
these methods for other applications in work we 
hope to report on in the near future.

b) Infinite Mixture: Inference
In the infinite mixture case, we assume the total 

number of topics, K, to be unknown and possibly 
infinite. The posterior distribution of c, which is 
the goal of the posterior inference in this model, 
cannot be derived in closed form. However, the 
component-specific full conditional distributions, 
that is, [ ] [ ]Pr( | )n nc c -  for n=1,…,N, are known up to 
a normalizing constant. Therefore we can explore 
the desired posterior distribution of the vector c 
through MCMC sampling methods.

Following algorithm 3 in Neal (2000), we de-

rive the full conditional distribution of the topic 
assignment vector. The full conditional probability 
that document Dn belongs in an existing topic k, 
given all documents, D, and the topic assignment 
of all other documents, c|– n|, is given by equation 
13 in Box 1, where c|– n| is the topic assignment 
vector for all documents other than n. The full 
conditional probability that document Dn belongs 
to a topic which no other Dj belongs to is shown 
in Box 2.

The sparseness of D and symmetry of the 
Dirichlet prior leads to forms of equations 13 and 
14 that are more quickly computed.

The parameters of the model estimated in this 
way are the vector c of topic assignments and 
the total number of topics, K. The posterior dis-
tributions of c and K can be found using a Gibbs 
sampler with these full conditional distributions 
as shown in Figure 5.

In order to assess convergence of the Markov 
chain, we examine the total number of topics 
(which varies by Gibbs sample) and consider 

Box 1. Equation 13
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the Markov chain converged when the number 
of topics has converged. Convergence was diag-
nosed when several independent chains sampled 
close values of K. We started chains with 10, 25, 
40, and 11988 topics and they converged after 
approximately 30 iterations. Thus we are reason-
ably confident of convergence despite the small 
number of iterations because of the diversity of 
chain starting values.

In the estimation of the posterior distribu-
tion of c and K, there are two hyperparameters 
which must be chosen. The prior distribution on 

c depends on the value of α; values of α greater 
than one encourage more groups while values of 
α smaller than one discourage new groups. We 
interpret α as the number of documents that we a 
priori believe belong in a new topic started by one 
document. However, once a document has started 
a new group, other documents will be less likely to 
join that group based on its small size. Therefore, 
α=1 is used here as the standard value.

The posterior distribution of c also depends, 
through β, on the η parameters. This is the Dirich-

Figure 5. The MCMC algorithm to find posterior distribution of classification in the infinite mixture 
model of text and references, described above (infinite mixture case).

Figure 6. Left Panel: Log-likelihood (5 fold cv) for K=5,...,50,75,100,200,300 topics. We plot: text 
only, alpha fitted (solid line); text only, alpha fixed (dashed line). Right Panel: Log-likelihood (5 fold 
cv) for K=5,...,50,100 topics. We plot: text and references, α fitted (solid line);text and references, α 
fixed (dotted line).
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let prior on the probability vector over words or 
references for each topic. A value of h smaller 
than V, the vocabulary size, implies a prior belief 
that the word distributions will be highly skewed 
(a few likely words and many words with almost 
no probability of use). These values of h cause 
all documents to appear in one large group, K=1. 
A value of h larger than V implies a prior belief 
that all words are equally likely to be used in a 
given topic. Here, we take h1 = 10,000 × V1 and  
h2 = 10,000 × V2  as values that encourage a range 
of values of K.

empirical results

We fit six models for latent topics in the PNAS 
dataset: using words alone or with references, 
finite or infinite mixture models, and (for finite 
mixture) fitted or fixed Dirichlet parameter a. 
In Figure 6, we give the log-likelihood obtained 
for the four finite mixture models (at K=5,10,⋅⋅⋅,5
0,100,200,300).

This suggests we choose a number of topics 
between 20 and 40 whether words or words and 
references are used. The infinite model generates 
a posterior distribution for the number of topics, 

K, given the data. Figure 7 shows the posterior 
distribution ranges from 20 to 28 topics when us-
ing only text and 16 to 23 topics when references 
are also used to identify topics. 

By choosing K=20 topics, we can meaningfully 
interpret all of the word and reference usage pat-
terns. We then fit the data with a 20 topics model 
for the finite mixture model using words and ref-
erences and focused on the interpretation of the 
20 topics. In Table 1, we list 12 high-probability 
words from these topics after filtering out the stop 
words. Table 2 shows the 5 references with the 
highest probability for 6 of the topics.

Using both tables, we offer the following 
interpretations of topics: 

• Topics 1 and 12 focus on nuclear activity 
(genetic) and (repair/replication). 

• Topic 2 concerns protein regulation and 
signal transduction. 

• Two topics are associated with the study of 
HIV and immune responses: topic 3 is related 
to virus treatment and topic 17 concerns 
HIV progression. 

• Two topics relate to the study of the brain 

Figure 7. Posterior distribution for the PNAS scientific collection corresponding to the infinite mixture 
models of text (left panel) and of text and references (right panel)
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Gene kinase cells cortex species

genes activation virus brain evolution

sequence receptor gene Visual population

chromosome protein Expression neurons populations

analysis signaling human memory genetic

genome alpha viral activity selection

sequences phosphorylation infection cortical data

expression beta cell learning different

human activated infected functional evolutionary

dna tyrosine vector retinal number

number activity protein response variation

identified signal vectors results phylogenetic

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

enzyme plants protein protein cells

reaction plant rna model cell

Ph acid proteins folding tumor

activity gene yeast state apoptosis

site expression mrna energy cancer

transfer arabidopsis activity time P53

Mu activity trna structure growth

state levels translation single human

rate cox vitro molecules tumor

active mutant splicing fluorescence death

oxygen light complex force induced

electron biosynthesis gene cdata expression

Topic 11 Topic 12 Topic 13 Topic 14 Topic 15

transcription dna cells protein Ca2+

gene rna cell membrane channel

Table 1. Word usage patterns corresponding to the model of text and references, with K=20 topics

continued on next page
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Table 1 continued

expression repair expression proteins channels

promoter strand development atp receptor

binding base expressed complex alpha

beta polymerase gene binding cells

transcriptional recombination differentiation cell neuron

factor replication growth actin receptors

protein single embryonic beta synaptic

dna site genes transport calcium

genes stranded drosophila cells release

activation cdata Embryos nuclear cell

Topic 16 Topic 17 Topic 18 Topic 19 Topic 20

peptide cells domain mice beta

binding cell protein type levels

peptides il binding wild increased

protein hiv terminal mutant insulin

amino antigen structure gene receptor

site immune proteins deficient expression

acid specific domains alpha induced

proteins gamma residues normal mice

affinity cd4 amino mutation rats

specific class beta mutations treatment

activity mice sequence mouse brain

active response region transgenic effects

Active response Region Transgenic effects

and neurons: topic 4 (behavioral) and topic 
15 (electrical excitability of neuronal mem-
branes). 

• Topic 5 is about population genetics and 
phylogenetics. 

• Topic 7 is related to plant biology. 
• Two topics deal with human medicine: topic 

10 with cancer and topic 20 with diabetes 
and heart disease. 

• Topic 13 relates to developmental biology. 
• Topic 14 concerns cell biology. 
• Topic 19 focuses on experiments on trans-

genic or inbred mutant mice. 
• Several topics are related to protein studies, 

for example, topic 9 (protein structure and 
folding), topic 11 (protein regulation by 
transcription binding factors), and topic 18 
(protein conservation comparisons). 
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• Topics 6, 8, and 16 relate to biochemistry.
 
These labels for the topics are primarily conve-
nience, but they do highlight some of the overlap 
between the PNAS sections (Plant Biology and 
Developmental Biology) and the latent topics (7 
and 13). However, many plant biologists may do 
molecular biology in their current work. We can 
also see by examining the topics that small sections 
such as Anthropology do not emerge as topics 
and broad sections such as Medical Science and 
Biochemistry have distinct subtopics within them. 
This also suggests special treatment for general 
sections such as Applied Biology and cutting-
edge interdisciplinary papers when evaluating 
the classification effectiveness of a model.

To summarize the distribution of latent aspects 
over distributions, we provide graphical represen-
tations of the distribution of latent topics for each 
of thirteen PNAS classifications in Figure 8. The 
third figure represents the model used for Tables 
1 and 2. The two figures on the right represent 
models where the a parameter of the Dirichlet 
prior over topics is fixed. These two models are 
less sparse than the corresponding models with 
a fit to the data. For twenty latent topics, we fix 
a=50/20=2.5>1 and this means each latent topic 
is expected to be present in each document and a 
priori we expect equal membership in each topic. 
By contrast the fitted values of a are less than one 
and therefore lead to models that expect articles 
to have high membership in a small number of 

Author Journal Author Journal Author Journal

Topic 2 Topic 5 Topic 7

Thompson,CB       Science, 1995 Sambrook,J Mol.Cloning Lab. 
Manu., 1989

Sambrook,J Mol.CloningLab.
Manu., 1989

Xia, ZG Science, 1995 Altschul,SF J. Mol. Bio, 1990 Thompson,JD       Nucleic.Acids.
Res,1994

Darnel, JE Science,1994 Elsen,MB P. Natl. Acad. Sci. 
USA, 1998

Altschul,SF J. Mol. Bio, 1990

Zou, H Cell, 1997 Altschul,SF Nucleic. Acids.Res, 
1997

Saitou,N Mol. Biol. Evol., 
1987

Muzio, M Cell, 1996 Thompson,JD       Nucleic. Acids.Res, 
1994

Altschul,SF Nucleic. Acids. 
Res, 1997

Topic 8 Topic 17 Topic 20

Sambrook,J Mol.Cloning Lab.
Manu.,1989

Sherrington,R Nature, 1995 Chomczynski,P Anal. Biochem., 
1987

Kim,NW Science,1994 Ho,DD Nature, 1995 Bradford,MM Anal. Biochem. 
1976

Bodnar,AG Science,1998 Scheuner,D Nat. Med., 1996 Kuiper,GGJM P. Natl. Acad. Sci. 
USA,1996

Bradford,MM Anal. Biochem. 
1976

Thinakaran,G Neuron,1996 Moncada,S Pharmacol 
rev,1991

Fischer,U Cell, 1995 Wei,X Nature,1995 Kuiper,GG Endocrinol-
ogy,1998

Table 2. Refences usage patterns for 6 of the 20 topics corresponding to the model of text and references, 
with K=20 topics
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topics. See below the section “Evidence from a 
Simulation Study: A Practice to Avoid” for further 
consequences of these assumptions. The articles 
in each PNAS classification tend to have a few 
latent topics highly represented when a is fit and 
low to moderate representation in all topics when 
a is fixed (as seen by white/light colored rows).

Upon examination of Figure 8, note that topic 
1, identified with genetic activity in the nucleus, 

was highly represented in articles from genetics, 
evolution, and microbiology. Also note that nearly 
all of the PNAS classifications are represented 
by several word and reference usage patterns in 
all of the models. This highlights the distinction 
between the PNAS topics and the discovered latent 
topics. The assigned topics used in PNAS follow 
the structure of the historical development of bio-
logical sciences and the divisions/departmental 
structures of many medical schools and universi-

Figure 8. The average membership in the 20 latent topics (columns) for articles in thirteen of the PNAS 
editorial categories (rows). Darker shading indicates higher membership of articles submitted to a spe-
cific PNAS editorial category in the given latent topic and white space indicates average membership 
of less than 10%. Note that the rows sum to 100% and therefore darker topics show concentration of 
membership and imply sparser membership in the remaining topics. These 20 latent topics were cre-
ated using the four finite mixture models with words only (1st, 2nd)or words and references (3rd, 4th)and 
a estimated (1st, 3rd)or fixed (2nd, 4th).
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ties. These latent topics, however, are structured 
around the current interest of biological sciences. 
Figure 8 also shows that there is a lot of hope for 
collaboration and interest between separate fields, 
which are researching the same ideas.

As we saw in Figure 6, the held-out log likeli-
hood plot corresponding to five-fold cross valida-
tion suggest a number between 20 and 40 topics 
for the finite mixture model. Other analyses using 
finite mixture with words and references supports 
support values toward the lower end of this range, 
that is, K=20, more than other choices. This is 
also true in the posterior distribution of K for the 
infinite mixture model. We fixed a=50/K follow-
ing the choice in Griffiths & Steyvers (2004) and 
estimated a from the data. This produced a similar 
conclusion. While Griffiths & Steyvers (2004) 
found posterior evidence for nearly 300 topics, 
a number on the order of 20 or 30 provides a far 
better fit to the data, assessed robustly by multiple 
criteria and specifications. Moreover, we find this 
simpler more interpretable in a meaningful way 
that is not possible with 300 topics.

evidence from a simulation study: A 
Practice to Avoid

To conclude, with the aim of highlighting the 
dangers of fixing the hyperparameters according 
to some ad-hoc strategy that is not supported by 
the data, for example, fixing a=50/K in the models 
of the previous section, we report some anecdotal 
evidence we gathered from synthetic data. We 
simulated a set of 3,000 documents according to 
the finite mixture model of text only previously 
described, with K* = 15 and a vocabulary of 
size 50. We then fitted the correct finite mixture 
model on a grid for K=5,10,45 that included the 
true underlying number of groups and associated 
patterns, using a five-fold cross-validation scheme. 
In a first batch of experiments we fitted alpha using 
empirical Bayes (Carlin & Louis, 2005), whereas 
in a second batch of experiments we set a=50/K, 
following the analysis in Griffiths & Steyvers 
(2004). The held-out log-likelihood profiles are 
reported in the right panel of Figure 9.

In this controlled experiment, the optimal 
number of nonobservable groups is K* = 15. This 
implies a value of a = 50/15 = 3.33 > 1 for the 
ad-hoc strategy, whereas ˆ =0.052<1 according 

Figure 9. Left: 2D symmetric Dirichlet densities underlying mixed-membership vectors q = (q1, q2)  
with parameter (solid black line)and with parameter a = 0.25 < 1 (dashed, red line). Right: held-out 
log-likelihood for the simulation experiments described in the text. The solid, black line corresponds to 
the strategy of fitting a = 50/K, whereas the dashed, red line corresponds to the strategy of fitting a via 
empirical Bayes. *K is denoted with an asterisk.
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to the empirical Bayes strategy. Intuitively, the 
fact that a>1 has a disrupting effect on the model 
fit: each topic is expected to be present in each 
document, or in other words each document is 
expected to belong equally to each group/topic, 
rather than only to only a few of them, as it is the 
case when a<1. As an immediate consequence, 
the estimates of the components of mixed-mem-
bership vectors, {qnk}, tend to be diffuse, rather 
than sharply peaked, as we would expect in text 
mining applications. We can observe this effect, 
for example, in Figure 8, where the plots in the 
right column display latent topics that are more 
“diffuse” than those estimated by fitting the 
hyperparameter a with maximum likelihood as 
well. As expected, setting the hyperparameter a 
to a value greater than one when the simulated 
data supports values in a dramatically different 
range, for example, 0.01<a<0.1, ultimately bias 
the estimation of the number of latent groups. 
Furthermore, Figure 9 shows that the empirical 
Bayes strategy correctly recovers K* = 15, whereas 
the ad-hoc strategy finds K* = 20.

Our experiments in a controlled setting suggest 
that it is desirable not to fix the hyper-parameters, 
for example, the nonobservable category abun-
dances a, according to ad-hoc strategies, unless 
such strategies are supported by previous analyses. 
Ad-hoc strategies will affect inference about the 
number of nonobservable groups and associated 
patterns in noncontrollable ways, and ultimately 
bias the analysis of data.

cAse study: dIsAbIlIty 
ProfIles of AMerIcAn elderly

As we mentioned in the section describing our two 
motivating case studies, the analysis we present 
here complements the analyses of the data from 
the National Long Term Care Survey (NLTCS) 
presented in Erosheva (2002a) and Erosheva and 
Fienberg (2005). In particular, Erosheva (2002a) 
considers finite mixture models that feature up to 

five latent disability profiles and concludes that the 
model with four profiles is the most appropriate 
to describe the NLTCS data. In this section, we 
explore a larger set of finite mixture models that 
feature up to ten latent disability profiles, and we 
also present a nonparametric model that does not 
fix the number of profiles prior to the analysis.4

As in the previous case study, the focus on the 
analysis is on the selection of the number of latent 
disability profiles, that is, on the selection of the 
model, which best describes the data.

Modeling disability

In this section we introduce model specifications to 
analyze the sample of American elderly included 
in the NLTC panel survey. For our purposes it 
will be sufficient to ignore the temporal dimen-
sion of the data collection—we refer to Connor 
(2006) for a longitudinal analysis. All our models 
can be subsumed into the general formulation of 
HBMMMs previously presented. We organize 
them into finite and infinite mixture models, as 
before, according to the dimensionality of the 
prior distribution, Da, posited at the latent vari-
able level—assumption A3.

We characterize an elderly American by a set 
of responses, xjn for j=1,…,J, which were measured 
through a questionnaire. In our analysis we select-
ed J=16 binary responses that encode answers to 
questions about the ability to perform six activities 
of daily living (ADL) and ten instrumental activi-
ties of daily living (IADL). The j-th response, xjn, 
is recorded as zero if the n-th individual does not 
have problems performing the j-th activity (he is 
considered healthy, to that extent, for the purpose 
the survey), whereas it is recorded as one if the 
n-th individual has problems performing the j-th 
activity (an individual is considered disabled to 
that extent for the purpose the survey).



���  

Discovery of Latent Patterns with Hierarchical Bayesian Mixed-Membership Models

a) finite Mixture: the Model

To carry out the analysis of the NLTCS data in 
the finite mixture setting we use the GoM model 
(previously described in “example 2’’), which 
posits the following generative process for the 
n-th individual. 

1. Sample qn ~ Da. 
2. For each of the J responses 
2.1. Sample zjn | qn ~ Multinomial (qn, 1). 
2.2. Sample xjn | zjn ~ Bernouilli(β[ j,1:K]zjn[1:K]). 

Here, we take Da to be a Dirichlet distribution 
with hyper-parameter a = (a1,...,aK). Note that this 
is not the symmetric distribution we used in the 
previous case study, in the finite setting. In this 
model, β is a matrix that encodes the probability 
of being disabled with respect to each one of the 
16 activities for the elderly who display disability 
characteristics specific to each of the K latent 
profiles. That is, if we denote as before the latent 
profile indicator vector with zjn, then β[ jk] = P(xjn 
= 1 | zjn[k] = 1) is the probability of being disabled 
with respect to the j-th activity for an elderly 
person who “belongs” completely to the k-th la-
tent profile. Note that in this model there are no 
constraints on the sum of the total probability of 
having being disabled given any specific profile. 
For example, [ ]1

J
jkj=∑  is not necessarily one as 

in the model of the PNAS scientific collection 
section5. The hyper-parameters of this model are 
a and β. In the section on finite mixture inference 
below, we develop a variational approximation 
to perform posterior inference on such hyperpa-
rameters, and on the latent variables n and jn for 
all j’s and n’s.

In our analysis, we also consider a fully Bayes-
ian version of the GoM model, following Erosheva 
(2002a), which posits the following generative 
process for all N individuals in the survey. 

1.   Sample x ~ Da 
2.   Sample a0 ~ Gamma(t1, t2) 

3.   Sample β[ j,k] ~ Beta(σ1, σ2) for all j and  
  k 

4.   For each of the N individuals 
4.1.   Sample qn ~ Dirichlet(a0x[1],...,a0x[K]). 
4.2.   For each of the J responses 
4.2.1.   Sample zjn | qn ~ Multinomial(qn, 1)
4.2.2. xjn | zjn ~ Bernouilli(β[ j,1:K]zjn[1:K])  

In this fully Bayesian setting we fix the hyper-pa-
rameter for convenience. According to our model 
specifications Da is a symmetric Dirichlet distribu-
tion with fixed hyper-parameter a1=...=aK= 1. The 
k-th component of x, x[k], represents the proportion 
of the elderly in the survey who express traits of 
the k-th latent disability profile. Further, we fix a 
diffuse Gamma distribution, t1 = 2 and t2 = 0, to 
control for the tails of the Dirichlet distribution of 
the mixed membership vectors, qn. The elements of 
β are sampled from a symmetric Beta distribution 
with fixed hyper-parameter σ1=σ2=1. Note that a 
symmetric Beta sampling scheme with unitary 
parameter is equivalent to a Uniform sampling 
scheme on [0, 1].

In both of the finite mixture models we pre-
sented in this section, we assume that the number 
of latent profiles is unknown but fixed at K. Our 
goal is to find the number of latent disability 
profiles, K*, which gives the best description of 
the population of the elderly.

b) Infinite Mixture: The Model

In the infinite setting we do not fix the number 
of subpopulations K underlying the population of 
surveyed American elderly prior to the analysis. 
As in the previous case study, the mixed mem-
bership vectors q1:N reduce to single membership 
vectors. We denote membership with c, where 
c[n]=k  indicates that qn:[k] = 1. We posit the fol-
lowing generative process. 

1. Sample c ~ Da  
2. For each of the K distinct values of c 
2.1. Sample β[ j,k] ~ Beta(t1, t2) for all j 
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3. For each of the N individuals 
3.1. For each of the J responses 
3.1.1. Sample xjn | βjc[n]

 ~ Bernouilli(β[ jc,[n]
)  

Here Da is the Dirichlet process prior described 
in the PNAS scientific collection section (infinite 
mixture model). In our implementation, we specify 
a symmetric Beta distribution for the disability 
probabilities, βkj, with t1 = t2 = t. Further, we fix 
the hyper-parameter of the Dirichlet process prior 
Da at a=1, which encodes “indifference” toward 
additional groups.

In this model, we assume that the number 
of latent disability profiles, K, is unknown and 
possibly infinite, through the prior for c, Da. In 
order to find the number of profiles that best 
describes the population of the elderly, we study 
the posterior distribution of c.

Inference
In this section we develop posterior infer-

ence for both specifications of the finite mixture 
model, and for the infinite mixture model above. 
In particular, we use variational methods for the 
‘‘basic’’ finite mixture model and Monte Carlo 
Markov chain (MCMC) methods for ‘‘fully Bayes-
ian’’ finite mixture model and for the infinite 
mixture model.

a) finite Mixture: Inference

A – The Variational Approximation for 
the “Basic” Model. 

As in the section dealing with the case study on 
PNAS scientific collection, in the finite mixture 
case, the coupling between the mixed-membership 
scores, q1:N  and the conditional disability prob-

abilities given profile, β, results in an intractable 
likelihood. Likewise, the algorithm that leads to 
the mean-field solution to the Bayes problem is 
a variational EM algorithm. This is an approxi-
mate EM algorithm, which involves evaluating 
a lower bound for the likelihood that depends on 
additional free parameters.

In the M step we maximize such a lower bound 
with respect to the hyperparameters of the model, 
(a, β), given the updates of the free parameters, 
(γ, f1:J) for each individual. We then obtain the 
(pseudo) maximum likelihood estimates for the 
hyperparameters as follows: 

 
[ ] [ ]

1

N

jk jn k jn
n

x
=

∝ ∑
 ,

where n is the index that runs over the N indi-
viduals in the sample. The (pseudo) maximum 
likelihood estimates for a are derived using the 
Newton-Raphson algorithm, with gradient and 
Hessian given in equations 8 and 9.

In the approximate E step we update the free 
parameters corresponding to each individual, 
(γ, f1:J), given the update estimates for the param-
eters of the model, (a,β), as follows: 

               (15)
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[ ]
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      (16)
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= + .∑
As before, the approximation is introduced be-
cause the integral used to evaluate the likelihood 
for an individual:
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Box 3. Equation 18
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does not have a closed form solution. As in the 
model for text and references, we then posit N in-
dependent fully factorized joint distributions over 
the latent variables, one for each individual, 

 
( ) ( ) ( | )

J

J J j j
j

q z q q z1: 1:
=1

, | , = | ∏

which depend on a set of free parameters, (γ, f1:

J). We then develop a mean-field approximation 
to the true posterior of the latent variables given 
data and hyper-parameters, which leads to the 
approximate EM described above.

b) The MCMC for the “Fully Bayesian” 
Model

We derived a Metropolis-within-Gibbs MCMC 
sampler for these model specifications, following 
Erosheva (2000a). One iteration for this algorithm 
consists of a Gibbs sampler for drawing z, q and β 
and two Metropolis-Hasting steps for drawing a0 
and x. The joint distribution for the fully Bayes-
ian version of the GoM model is shown in Box 3 
(equation 18), where [ ]1 1

( ( )J K
jkj k

p p
= =

) = ∏ ∏  
and p (a) = p (a0) p(x). The exact specifications 
for p(βjk), p(x) and p(a0) are given in the paragraph 
on finite mixture models of this section. From the 
factorization of the joint distribution in equation 

(18), we are able to derive the full conditional 
distributions of β, z and q.

The Gibbs sampler algorithm can then be used 
to obtain the posterior distribution of the model 
parameters β and q. To obtain the parameters up-
date for the (i+1)-th step, we do the following:

• For n=1,..., N, for j=1,..., J, sample: 

( 1)i
jnz +  ~ Multinomial (q, 1)

where q = (q1,...,qK) and: 

jn jnx xi i i
k n k jk jkq 1-( ) ( ) ( )

[ ] [ ] [ ]= ( ) (1- ) .

• For j=1,..., K, for k=1,...,K, sample:   
 

( 1) 1
[ ] [ ]

( 1)
[ ]

1 1
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i i

jn k jn k

i
jk jn jn

n z n z
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• For n=1,..., N, sample: 

                 ( 1) ( 1) ( 1)
[1] [1] [ ] [ ]
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We use Metropolis-Hasting steps to draw from the 
posterior distribution of a0 and x, given that a = 
a0x is random. For  a0 , we consider the proposal 
distribution  (p Gamma*

0 0 0| ) = ( , / ) where γ is 
an adjustable tuning parameter. The Metropolis-
Hasting step for a0 is: 

• Sample ~ ip* * ( )
0 0 0( | ). 

• Compute the proposal ratio:

[ ] [ ]

1
{ : , } { : , }

( | , )
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,
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i i
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J
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J J

p c k c x
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N m n k

-

=
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Box 4. 
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Here, q(a0 | .)  is the full conditional distribution 
of a0, conditioning on all of the other variables. 
From (18), it follows that: 
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For x, we consider the proposal distribution  
1( ( , , )Kp Dirichlet K K* | ) = 

 where δ 
is a tuning parameter, which can be adjusted. 
The Metropolis-Hasting step for x is described 
below: 

• Sample x* ~ p(x* | x(i)).  
• Compute the proposal ratio:

(
i

i i

q pr
q p

* ( ) *

( ) * ( )

( | .) ( | )
) =

( | .) ( | )
 
• Let:
  

               
*

( 1)
( )

min(1, ( ))
1 min(1, ( ))

i
i

with probability r
with probability r

+ 
= 

-

Here, q(x | .) is the full conditional distribution 
of x, conditioning on all of the other variables. 
From (18), we have:
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b) Infinite Mixture: Inference

In the infinite mixture case, where we assume the 
total number of disability profiles to be infinite 
with an unknown number, K of observed profiles 
in this data, the posterior distribution of c does 
not have a closed form solution. However, the full 
conditional distributions of the cn for n=1,...,N are 
known up to a normalizing constant. Using the 
algorithm in Figure 5, we substitute the following 
full conditional probabilities into step 7. The full 
conditional probability of the n-th elderly person 
belonging to an existing (without individual n) 
profile k is shown in Box 4, where c[– n] is the profile 
assignment vector for all elderly people other than 
the n-th. The full conditional probability that the 
n-th elderly person belongs to a profile, which no 
other individual belongs to, is the following: 

                  [ ] [ ] [ ]( | , ) .
2 ( 1 )n i n Jp c c i n c x

N-≠ ∀ ≠ ∝
- +

The parameters of the model estimated in this 
way are the vector c of profile assignments and 
the total number of profiles, K. The posterior dis-
tributions of c and K can be found using a Gibbs 
sampler with these full conditional distributions. 
In order to assess convergence of the Markov 
chain, we examine the total number of profiles 
(which varies by Gibbs sample) and consider the 
Markov chain converged when the number of 
profiles has converged.

We diagnosed the algorithm to have converged 
when several independent chains sampled close 
values of K. We started chains with 10, 25, 40, 
and 21,574 profiles and they converged after 
approximately 25 iterations. We can be reason-
ably confident of convergence despite the small 
number of iterations because of the diversity of 
chain starting values.

Again, the posterior distributions of c and K 
depend on the values of a (the Dirichlet process 
parameter) and t (the parameter of the symmetric 
Beta priors on the βjk. Using a=1 is a standard 
value which assumes prior indifference toward 
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groups of one member. Values of τ less than one 
represent a prior belief that ADL/IADL disability 
probabilities will tend to be close to 0 or 1 for each 
profile. Values of τ greater than one represent 
a prior belief that many disability probabilities 
will be close to 0.5. We choose a value of τ=50 
to represent a belief that there should be profiles 
with intermediate probabilities

Empirical Results

We fit three models for disability propensity 
profiles: the finite mixture with random Dirichlet 
parameter α, the finite mixture with fixed but 
unknown α, and the infinite mixture model.

We carry out the analysis of the NLTCS data 
using both MCMC and variational methods, and 
fitting the data with K-profiles GoM models, for 
K=2,3,⋅⋅⋅,10,15. To choose the number of latent 
profiles that best describes the data, we use a 
method that focuses on the most frequent response 

Table 3. Observed and expected cell counts for frequent response patterns under GoM models with 
K=2,3,…,10,15. The model with K=9 replicates marginal abundance best 

P Response pattern observed K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=15

1 0000000000000000 3853 1249 2569 2055 2801 2889 3093 2941 3269 3016 3031

2 0000100000000000 216 212 225 172 177 186 180 180 202 205 187

3 0000001000000000 1107 1176 1135 710 912 993 914 937 1010 944 940

4 0000101000000000 188 205 116 76 113 200 199 181 190 198 201

5 0000001000100000 122 259 64 88 58 199 90 89 116 127 127

6 0000000000010000 351 562 344 245 250 274 274 259 331 303 357

7 0010000000010000 206 69 20 23 116 86 80 137 116 111 149

8 0000001000010000 303 535 200 126 324 255 236 213 273 264 325

9 0010001000010000 182 70 44 71 170 169 162 200 172 187 219

10 0000101000010000 108 99 51 39 162 105 85 117 97 108 116

11 0010101000010000 106 16 32 94 94 123 125 133 142 157 136

12 0000100000001000 195 386 219 101 160 46 25 24 25 31 27

13 0000001000001000 198 369 127 111 108 341 170 169 189 200 163

14 0000001000101000 196 86 41 172 90 104 224 214 174 187 160

15 0000001000011000 123 174 96 86 132 131 120 109 95 108 110

16 0000001000111000 176 44 136 162 97 67 167 149 152 167 157

17 0010001000111000 120 9 144 104 41 57 47 96 75 72 80

18 0000101000111000 101 12 127 90 54 41 68 72 70 74 124

19 0111111111111000 102 57 44 38 22 18 18 85 103 85 61

20 1111111111111010 107 35 88 104 96 84 87 43 37 31 73

21 0111111111111010 104 122 269 239 202 52 50 50 63 53 66

22 1111111111111110 164 55 214 246 272 274 276 224 166 143 115

23 0111111111111111 153 80 291 261 266 250 230 235 189 167 137

24 1111111111111111 660 36 233 270 362 419 418 582 612 474 423
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No. of latent profiles, 
K

2 3 4 5 6 7 8 9 10 15

Sum of squares × 105 75 20 37 13 11 7.7 9.4 4.4 8.2 8.1

Sum of Pearson 
residuals

20684 4889 5032 1840 2202 2458 1908 1582 1602 1604

Table 4. Sum of Pearson residuals for GoM models with K=2, 3,…, 10, 15

Figure 10. Left panel: DIC for K=2,...,10,15 latent profiles (GoM model). Right panel: BIC for K=2,...,10 
latent profiles (GoM model)

 

Figure 11. Left panel: Log-likelihood (5 fold cv) for K=2,...,10,15 (GoM model). Right panel: Posterior 
distribution of K
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patterns. In the NLTCS data, what we mean by 
most frequent response patterns are the response 
patterns with observed counts greater than 100. 
For example, the “all-zero” response pattern 
(which concerns individuals with no disabilities 
on the 16 ADLs/IADLs) has the largest observed 
count of 3,853. They are actually 24 response 
patterns with observed counts greater than 100 
and they account for 41% of the total number of 
observations (which is here 21,574). Then, using 
the estimates of the model parameters obtained 
via an MCMC algorithm or a variational EM al-
gorithm, we can compute the expected cell counts 
for the 24 response patterns and compare with the 
observed cell counts. Eventually, to choose the 
model that best fits the data, we can compute the 
sum of absolute values of the “Pearson chi-square” 
residuals (Bishop, Fienberg, & Holland, 1975), 
(Observed Count – Expected Count)/Expected 
Count for each model .

Table 3 provides the expected cell counts for 
the 24 most frequent response patterns (to be 
compared with the observed cell counts) using 
MCMC methods (for K=2,...,10). We observe that 
the model with K=9 has the best fit for the “all-

Figure 12. Latent profiles for the GoM model with K=9

zero” response pattern, the “all-one” response 
pattern and the pattern number P=3 (pattern for 
individuals on disabled on “doing heavy house-
work”). The computation of the sum of Pearson 
residuals shown in Table 4 confirms that K=9 
seems to be a good choice. This is also true when 
one computes the expected cell counts using the 
variational methods.

To deal with this issue of model choice, we can 
also compute a version of DIC directly using the 
output from MCMC simulations. Indeed, if we 
focus on parameters q and β, the computation is 
done using draws from the posterior distribution 
of  β[ jk] and qn[k]. Figure 10 (left panel) shows the 
plot of DIC for models with K=2,3,⋅⋅⋅,10,15 latent 
profiles. According to the DIC plot, we choose 
models with K=9 or K=10 latent profiles. Using 
variational approximation methods, we also 
computed an approximate version of BIC based 
on the variational approximation. Figure 10 (right 
panel) shows the plot of BIC for models with 
K=2,3,⋅⋅⋅,10,15 latent profiles. This criterion sug-
gests a number of profiles around 8 to 10. The cross 
validation results shown in Figure 10 (left panel) 
also suggest the choice of 9 or 10 profiles.
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The infinite model generates a posterior dis-
tribution for the number of profiles, K, given the 
data. Figure 11 (Right Panel) shows the posterior 
distribution ranges from 7 to 10 profiles. 

According to the array of different criteria we 
have considered, K=9 seems to be an appropriate 
choice for the NLTCS data. Figure 12 shows the 
latent profiles obtained for the 9 profiles GoM 
model using MCMC methods. The conditional 
response probabilities represented on the Y-axis 
are the posterior mean estimates of , the probability 
of being disabled on the activity j for a complete 
member of latent profile k. The profiles have the 
following interpretation: 

• We can clearly distinguish two profiles for 
“healthy” individuals; these are the lower 
curves (the solid, black curve and the solid, 
grey curve). 

• The upper curve (solid, black curve) corre-
sponds to seriously “disabled” individuals 
since most of the probabilities are greater 
than 0.8. 

• One profile (long-dashed, grey curve) has 
the second highest values for the IADLs 
“managing money,” “taking medicine” and 
“telephoning”. This focuses on individuals 
with some cognitive impairment. 

• The profile with the second highest prob-
abilities for most of the ADLs/IADLs (solid, 
grey curve) characterizes “semi-disabled” 
individuals. 

• The profile with very high probabilities for 
all the activities involving mobility includ-
ing the IADL “outside mobility” (dashed, 
grey curve) characterizes mobility-impaired 
individuals. 

• Another profile characterizes individuals 
who are relatively healthy but cannot do 
“heavy housework” (long-dashed, black 
curve). Note that in Table 3, the response 
pattern n=3 has the second largest observed 
cell count.

• The two remaining profiles (the dot-dashed, 
black curve and the dashed, black curve) 
correspond to individuals who are “semi-
healthy” since they show limitations in 
performing some physical activities. 

We found similar interpretations with the esti-
mates based on variational methods and MCMC 
methods despite some differences in the estimated 
values of the conditional disability propensity 
probabilities βjk.

Because the NLTCS data is characterized by 
a large amount of healthy individuals with “all 
zero” response patterns (there are 3,853 all zero 
response patterns and they represent a little less 
than 18% of the sample population), we would 
like to take into account this excess of healthy 
individuals. In a forthcoming paper focusing 
on the results of analyses with the GoM model, 
we plan carry out an extended analysis using a 
modified version of the GoM model which adjusts 
for this excess.

concludInG reMArks

In this chapter, we have studied the issue of model 
choice in the context of mixed-membership mod-
els. Often the number of latent classes or groups 
is of direct interest in applications, but it is always 
an important element in determining the fit and 
meaning of the model.

We have used “latent Dirichlet allocation” 
which has some breadth of currency in the data 
mining literature, and shown extensions to it to 
analyze a corpus of PNAS biological sciences 
publications from 1997 to 2001. Among the ap-
proaches to select the number of latent topics 
which we study are k-fold cross-validation and the 
use of a Dirichlet process prior. Our results focus 
on six combinations of models and model choice 
strategies. They lead us to report on and interpret 
results for K=20 topics, a value that appears to be 
within the range of optimal numbers of topics. 
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The resulting topics are also easily interpretable 
and profile the most popular research subjects in 
biological sciences in terms of the correspond-
ing words and references usage patterns. Much 
higher choices for K, lead to faulty and difficult 
to interpret conclusions. Incidentally, our 20 
topics correlate well with the PNAS editorial 
categories.

For the analysis of the NLTCS data, we have 
developed parametric and nonparametric varia-
tions the GoM model. We performed posterior 
inference using variational methods and MCMC. 
We have used different criteria to assess model 
fit and choose K; in particular a method based on 
the sum of Pearson residuals for the most frequent 
response patterns, and information criteria such 
as DIC and BIC. We have then reached the con-
clusion that K=9 latent profiles is an appropriate 
choice for the data set. This choice allows us to 
identify profiles that did not appear in the analysis 
performed in Erosheva and Fienberg (2005), for 
example the profile for individuals who are fairly 
healthy on all the activities but “doing heavy 
housework.” Further, we were able to interpret all 
nine profiles, whereas with K=4 and K=5, these 
profiles could not be ordered by severity. None-
theless, the fit seems not to improve markedly for 
models with five to ten latent profiles.
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endnotes

1 On the contrary, any given reference that 
was picked from the set of known citations 
typically appears as a unique bibliography 
item. Thus there are no replicates of any 
given reference in the same bibliography.
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2 In this application, we refer to the subpopula-
tions of assumption A.1 as ‘‘topics’’. Despite 
the suggestive semantics, topics are pairs 
of latent distributions over the vocabulary 
and the set of known in citations, from a 
statistical perspective, as defined by pairs 
of corresponding columns of the two β 
matrices.

3 On the contrary, any given reference that 
was picked from the set of known citations 
typically appears as a unique bibliography 
item. Thus there are no replicates of any 
given reference in the same bibliography.

4 Rather, the nonparametric model implicitly 

encodes a prior on the number of latent 
profiles such that K≈ln(N), where N is the 
number of elderly in the sample. In the 
NLTCS data, N=21,574 and ln(N)≈10.

5 Note another subtle difference from the 
generative process of the section dealing 
with the PNAS scientific publications (finite 
mixture case) . In this model we loop over 1 
replicate of each of the J responses observed 
for the n-th American senior, whereas in 
the previous model we loop over R1 word 
instances and R2bibliography items observed 
in the n-th document.
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